1,361 research outputs found

    Extended Algorithm for Translation of MSC-diagrams into Petri Nets

    Get PDF
    The article presents an algorithm for translation the system, described by MSC document into Petri Net modulo strong bisimulation. Obtained net can be later used for determining various systems' properties. Example of correction error in original system with using if described algorithm presented

    Synthesis of behavioral models from scenarios

    No full text

    State-Based Techniques For Designing, Verifying And Debugging Message Passing Systems

    Get PDF
    Message passing systems support the applications of concurrent events, where independent or semi-independent events occur simultaneously in a nondeterministic fashion. The nature of independence, random interactions and concurrency made the code development of such applications complicated and error-prone. Conventional code development environments or IDEs, such as Microsoft Visual Studio, provide little programming support in this regard. Furthermore, ensuring the correctness of a message passing system is a challenge. Typically, it is important to guarantee that a system meets its desired specifications along its construction process. Model checking is one of the techniques used in software verification which has proven to be effective in discovering hidden design and implementation errors. The required advanced knowledge of formal methods and temporal languages is one of the impediments in adopting model checking by software developers. To integrate model checking environments and conventional IDEs, this dissertation proposes a multi-phase development framework that facilitates designing, verifying, implementing and debugging state-based message passing systems. The techniques and design principles of the proposed framework focus on improving and easing the software development experience. In the first phase, a two-level design methodology is proposed through using abstract high-level communication blocks and hierarchical state-behavioral descriptions that were developed in this research. In the second phase, a new method based on choosing from a pre-determined set of patterns in concurrent communication properties is proposed to facilitate collecting the essential specifications of the system where the atomic propositions are linked with the system design. A complex property can be attained by hierarchically nesting some of these patterns. A procedure to automatically generate formal models in a model checker (MC) language is proposed. Once the model that contains both the design and the properties of the system are generated, a model checker is used to verify the correctness of the proposed system and ensure its compliance with specifications. To help in locating the source of an undesired specification, if any, a procedure to map a counter example generated by the MC to the original design is presented. In the third phase, a skeleton code of the design specification is generated in a general programming language such as Microsoft C\#, Java, etc. moreover, the ability to debug the generated code using a conventional IDE while tracing the debugging process back to the original design was established. Finally, a graphical software tool that supports the proposed framework is developed where SPIN MC is used as a verifier. The tool was used to develop and verify several case studies. The proposed framework and the developed software tool can be considered a key solution for message passing systems design and verification

    Process mining and verification

    Get PDF

    Some rules to transform sequence diagrams into coloured Petri nets

    Get PDF
    This paper presents a set of rules that allows software engineers to transform the behavior described by a UML 2.0 Sequence Diagram (SD) into a Colored Petri Net (CPN). SDs in UML 2.0 are much richer than in UML 1.x, namely by allowing several traces to be combined in a unique diagram, using high-level operators over interactions. The main purpose of the transformation is to allow the development team to construct animations based on the CPN that can be shown to the users or the clients in order to reproduce the expected scenarios and thus validate them. Thus, non-technical stakeholders are able to discuss and validate the captured requirements. The usage of animation is an important topic in this context, since it permits the user to discuss the system behavior using the problem domain language. A small control application from industry is used to show the applicability of the suggested rules

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    О АЛГОРИТМЕ ПЕРЕВОДА ДОКУМЕНТОВ MSC В СЕТИ ПЕТРИ

    Get PDF
    Описывается алгоритм перевода документа MSC в трассово эквивалентную ему сеть Петри. Полученная таким образом сеть Петри может использоваться для анализа свойств системы, представленной исходным документом MSC. Алгоритм является частью инструментария для автоматического анализа и верификации документов MSC.\ud The article describes the algorithm for translation MSC document to Petri Net, which is trace-equivalent to the original MSC. Petri Net, obtained by this algorithm, can be used for analysis of properties of the system, described by MSC document. Before mentioned algorithm is a part of the toolset for automatic verification and analysis of MSC documents. \u

    A model driven approach to analysis and synthesis of sequence diagrams

    Get PDF
    Software design is a vital phase in a software development life cycle as it creates a blueprint for the implementation of the software. It is crucial that software designs are error-free since any unresolved design-errors could lead to costly implementation errors. To minimize these errors, the software community adopted the concept of modelling from various other engineering disciplines. Modelling provides a platform to create and share abstract or conceptual representations of the software system – leading to various modelling languages, among them Unified Modelling Language (UML) and Petri Nets. While Petri Nets strong mathematical capability allows various formal analyses to be performed on the models, UMLs user-friendly nature presented a more appealing platform for system designers. Using Multi Paradigm Modelling, this thesis presents an approach where system designers may have the best of both worlds; SD2PN, a model transformation that maps UML Sequence Diagrams into Petri Nets allows system designers to perform modelling in UML while still using Petri Nets to perform the analysis. Multi Paradigm Modelling also provided a platform for a well-established theory in Petri Nets – synthesis to be adopted into Sequence Diagram as a method of putting-together different Sequence Diagrams based on a set of techniques and algorithms

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii
    corecore