1,545 research outputs found

    Prognostic Approaches Using Transient Monitoring Methods

    Get PDF
    The utilization of steady state monitoring techniques has become an established means of providing diagnostic and prognostic information regarding both systems and equipment. However, steady state data is not the only, or in some cases, even the best source of information regarding the health and state of a system. Transient data has largely been overlooked as a source of system information due to the additional complexity in analyzing these types of signals. The development for algorithms and techniques to quickly, and intuitively develop generic quantification of deviations a transient signal towards the goal of prognostic predictions has until now, largely been overlooked. By quantifying and trending these shifts, an accurate measure of system heath can be established and utilized by prognostic algorithms. In fact, for some systems the elevated stress levels during transients can provide better, more clear indications of system health than those derived from steady state monitoring. This research is based on the hypothesis that equipment health signals for some failure modes are stronger during transient conditions than during steady-state because transient conditions (e.g. start-up) place greater stress on the equipment for these failure modes. From this it follows that these signals related to the system or equipment health would display more prominent indications of abnormality if one were to know the proper means to identify them. This project seeks to develop methods and conceptual models to monitor transient signals for equipment health. The purpose of this research is to assess if monitoring of transient signals could provide alternate or better indicators of incipient equipment failure prior to steady state signals. The project is focused on identifying methods, both traditional and novel, suitable to implement and test transient model monitoring in both an useful and intuitive way. By means of these techniques, it is shown that the addition information gathered during transient portions of life can be used to either to augment existing steady-state information, or in cases where such information is unavailable, be used as a primary means of developing prognostic models

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    A Discrete-Time Direct-Torque Control for Direct-Drive PMSG-Based Wind Energy Conversion Systems

    Get PDF
    This paper proposes a novel flux space vector-based direct-torque control (DTC) scheme for permanent magnet synchronous generators (PMSGs) used in variable-speed direct drive wind energy conversion systems (WECSs). The discrete time control law, which is derived from the perspective of flux space vectors and load angle, predicts the desired stator flux vector for the next time-step with the torque and stator flux information only. The space-vector modulation (SVM) is then employed to generate the reference voltage vector, leading to a fixed switching frequency as well as lower flux and torque ripples when compared to the conventional DTC. Compared with other SVM-based DTC methods in the literature, the proposed DTC scheme eliminates the use of PI regulators and is less dependent on machine parameters, e.g., stator inductances and permanent magnet flux linkage, while the main advantages of the DTC, e.g., fast dynamic response and no need of coordinate transform, are preserved. The proposed DTC scheme is applicable for both nonsalient-pole and salient-pole PMSGs. The overall control scheme is simple to implement and is robust to parameter uncertainties and variations of the PMSGs. The effectiveness of the proposed discrete-time DTC scheme is verified by simulation and experimental results on a 180 W salient-pole PMSG and a 2.4-kW nonsalient-pole PMSG used in variable-speed direct-drive WECSs

    Index to 1981 NASA Tech Briefs, volume 6, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1981 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences
    • …
    corecore