22,331 research outputs found

    Applying Clustering Techniques in Hybrid Network in the Presence of 2D and 3D Obstacles

    Get PDF
    Clustering spatial data is a well-known problem that has been extensively studied. In the real world, there are many physical obstacles such as rivers, lakes, highways, and mountains, whose presence may substantially affect the clustering result. Although many methods have been proposed in previous works, very few have considered physical obstacles and interlinking bridges. Taking these constraints into account during the clustering process is costly, yet modeling the constraints is paramount for good performance. Owing to saturation in existing telephone networks and the ever increasing demand for wire and wireless services, telecommunication engineers are looking at technologies that can deliver sites and satisfy the demand and level of service constraints in an area with and without obstacles. In this paper, we study the problem of clustering in the presence of obstacles to solve the network planning problem. As such, we modified the NetPlan algorithm and developed the COD-NETPLAN (Clustering with Obstructed Distance -- Network Planning) algorithm to solve the problem of 2D and 3D obstacles. We studied the problem of determining the location of the multi-service access node in an area with many mountains and rivers. We used a reachability matrix to detect 2D obstacles, and line segment intersection together with geographical information system techniques for 3D obstacles. Experimental results and the subsequent analysis indicate that the COD-NETPLAN algorithm is both efficient and effective

    3D medical volume segmentation using hybrid multiresolution statistical approaches

    Get PDF
    This article is available through the Brunel Open Access Publishing Fund. Copyright © 2010 S AlZu’bi and A Amira.3D volume segmentation is the process of partitioning voxels into 3D regions (subvolumes) that represent meaningful physical entities which are more meaningful and easier to analyze and usable in future applications. Multiresolution Analysis (MRA) enables the preservation of an image according to certain levels of resolution or blurring. Because of multiresolution quality, wavelets have been deployed in image compression, denoising, and classification. This paper focuses on the implementation of efficient medical volume segmentation techniques. Multiresolution analysis including 3D wavelet and ridgelet has been used for feature extraction which can be modeled using Hidden Markov Models (HMMs) to segment the volume slices. A comparison study has been carried out to evaluate 2D and 3D techniques which reveals that 3D methodologies can accurately detect the Region Of Interest (ROI). Automatic segmentation has been achieved using HMMs where the ROI is detected accurately but suffers a long computation time for its calculations
    corecore