748 research outputs found

    Recognizing Cartesian graph bundles

    Get PDF
    AbstractGraph bundles generalize the notion of covering graphs and graph products. In this paper we extend some of the methods for recognizing Cartesian product graphs to graph bundles. Two main notions are used. The first one is the well-known equivalence relation δ★ defined on the edge-set of a graph. The second one is the concept of k-convex subgraphs. A subgraph H is k-convex in G, if for any two vertices x and y of distance d, d ⩽ k, each shortest path from x to y in G is contained entirely in H. The main result is an algorithm that finds a representation as a nontrivial Cartesian graph bundle for all graphs that are Cartesian graph bundles over a triangle-free simple base. The problem of recognizing graph bundles over a base containing triangles remains open

    Cartesian product of hypergraphs: properties and algorithms

    Full text link
    Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspects of Cartesian products of hypergraphs. We also extend a classical prime factorization algorithm initially designed for graphs to connected conformal hypergraphs using 2-sections of hypergraphs

    Fast Recognition of Partial Star Products and Quasi Cartesian Products

    Get PDF
    This paper is concerned with the fast computation of a relation R\R on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of R\R is the relation δ\delta^\ast, whose convex closure yields the product relation σ\sigma that induces the prime factor decomposition of connected graphs with respect to the Cartesian product. For the construction of R\R so-called Partial Star Products are of particular interest. Several special data structures are used that allow to compute Partial Star Products in constant time. These computations are tuned to the recognition of approximate graph products, but also lead to a linear time algorithm for the computation of δ\delta^\ast for graphs with maximum bounded degree. Furthermore, we define \emph{quasi Cartesian products} as graphs with non-trivial δ\delta^\ast. We provide several examples, and show that quasi Cartesian products can be recognized in linear time for graphs with bounded maximum degree. Finally, we note that quasi products can be recognized in sublinear time with a parallelized algorithm

    Square Property, Equitable Partitions, and Product-like Graphs

    Full text link
    Equivalence relations on the edge set of a graph GG that satisfy restrictive conditions on chordless squares play a crucial role in the theory of Cartesian graph products and graph bundles. We show here that such relations in a natural way induce equitable partitions on the vertex set of GG, which in turn give rise to quotient graphs that can have a rich product structure even if GG itself is prime.Comment: 20 pages, 6 figure

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved

    ON VULNERABILITY MEASURES OF NETWORKS

    Get PDF
    As links and nodes of interconnection networks are exposed to failures, one of the most important features of a practical networks design is fault tolerance. Vulnerability measures of communication networks are discussed including the connectivities, fault diameters, and measures based on Hosoya-Wiener polynomial. An upper bound for the edge fault diameter of product graphs is proved

    Fast recognition of partial star products and quasi cartesian products

    Get PDF
    This paper is concerned with the fast computation of a relation d on the edge set of connected graphs that plays a decisive role in the recognition of approximate Cartesian products, the weak reconstruction of Cartesian products, and the recognition of Cartesian graph bundles with a triangle free basis. A special case of d is the relation , whose convex closure yields the product relation that induces the prime factor decomposition of connected graphs with respect to the Cartesian product. For the construction of d so-called Partial Star Products are of particular interest. Several special data structures are used that allow to compute Partial Star Products in constant time. These computations are tuned to the recognition of approximate graph products, but also lead to a linear time algorithm for the computation of for graphs with maximum bounded degree. Furthermore, we define quasi Cartesian products as graphs with non-trivial . We provide several examples, and show that quasi Cartesian products can be recognized in linear time for graphs with bounded maximum degree. Finally, we note that quasi products can be recognized in sublinear time with a parallelized algorithm.Web of Science115212411
    corecore