12 research outputs found

    Solving renewable energy source selection problems using a q-rung orthopair fuzzy-based integrated decision-making approach

    Full text link
    This paper proposes an integrated decision-making framework for the systematic selection of a renewable energy source (RES) from a set of RESs based on sustainability attributes. A real case study of RES selection in Karnataka, India, using the framework is demonstrated, and the results are compared with state-of-the-art methods. The main reason for developing this framework is to handle uncertainty and vagueness effectively by reducing human intervention. Systematic selection of RESs also reduces inaccuracies and promotes rational decision-making. In this paper, q-rung orthopair fuzzy information is adopted to minimize subjective randomness by providing a flexible and generalized preference style. Further, the study found systematic approaches for imputing missing values, calculating attributes’ and decision-makers’ weights, aggregation or preferences, and prioritizing RESs, which are integrated into the framework. Comparing the proposed framework with state-of-the-art-methods shows that (i) biomass and solar are suitable RESs for the process under consideration in Karnataka, (ii) the proposed framework is consistent with state-of-the-art methods, (iii) the proposed framework is sufficiently stable even after weights of attributes and decision makers are altered, and (iv) the proposed framework produces broad and sensible rank values for efficient backup management. These results validate the significance of the proposed framework

    Extended Fuzzy Sets and Their Applications

    Get PDF
    This contribution deals with introducing the innovative concept of extended fuzzy set (E-FS), in which the S-norm function of membership and non-membership grades is less than or equal to one. The proposed concept not only encompasses the concept of the fuzzy set (FS), but it also includes the concepts of the intuitionistic fuzzy set (IFS), the Pythagorean fuzzy set (PFS) and the p-rung orthopair fuzzy set (p-ROFS). In order to explore the features of the E-FS concept, set and algebraic operations on E-FSs, average and geometric operations of E-FSs are studied and an E-FS score function is defined. The superiority of the E-FS concept is further confirmed with a score-based decision making technique in which the concepts of FS, IFS, PFS and p-ROFS do not make sense

    Q-rung orthopair normal fuzzy aggregation operators and their application in multi-attribute decision-making

    Get PDF
    © 2019 by the authors. Q-rung orthopair fuzzy set (q-ROFS) is a powerful tool to describe uncertain information in the process of subjective decision-making, but not express vast objective phenomenons that obey normal distribution. For this situation, by combining the q-ROFS with the normal fuzzy number, we proposed a new concept of q-rung orthopair normal fuzzy (q-RONF) set. Firstly, we defined the conception, the operational laws, score function, and accuracy function of q-RONF set. Secondly, we presented some new aggregation operators to aggregate the q-RONF information, including the q-RONF weighted operators, the q-RONF ordered weighted operators, the q-RONF hybrid operator, and the generalized form of these operators. Furthermore, we discussed some desirable properties of the above operators, such as monotonicity, commutativity, and idempotency. Meanwhile, we applied the proposed operators to the multi-attribute decision-making (MADM) problem and established a novel MADM method. Finally, the proposed MADM method was applied in a numerical example on enterprise partner selection, the numerical result showed the proposed method can effectively handle the objective phenomena with obeying normal distribution and complicated fuzzy information, and has high practicality. The results of comparative and sensitive analysis indicated that our proposed method based on q-RONF aggregation operators over existing methods have stronger information aggregation ability, and are more suitable and flexible for MADM problems

    Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number

    Get PDF
    In this paper, the use of the Fermatean fuzzy number (FFN) in a significant research problem of disaster decision-making by defining operational laws and score function is demonstrated. Generally, decision control authorities need to brand suitable and sensible disaster decisions in the direct conceivable period as unfitting decisions may consequence in enormous financial dead and thoughtful communal costs. To certify that a disaster comeback can be made, professionally, we propose a new disaster decision-making (DDM) technique by the Fermatean fuzzy Schweizer-Sklar environment. First, the Fermatean fuzzy Schweizer-Sklar operators are employed by decision-makers to rapidly analyze their indefinite and vague assessment information on disaster choices. Then, the DDM technique based on the FFN is planned to identify highly devastating disaster choices and the best available choices. Finally, the proposed regret philosophy DDM technique is shown functional to choose the ideal retort explanation for a communal fitness disaster in Pakistan. The dominance and realism of the intended technique are further defensible through a relative study with additional DDM systems

    A robust MADM-approach to recruitment-based pattern recognition by using similarity measures of interval-valued fuzzy hypersoft set

    Get PDF
    Interval-valued fuzzy hypersoft set (IVFHSS \mathbb{IVFHSS} ) is considered a pertinent fuzzy set-like model that is the combination of an interval-valued fuzzy set and a hypersoft set. It is more flexible and trustworthy for dealing with information-based uncertainties due to the consideration of interval-based hypersoft settings. This kind of setting enables the decision makers to approximate the alternatives in terms of interval-type opinions by considering multiple arguments concurrently. These features make it a fitting model for dealing with uncertain decision-making scenarios like the recruitment process. The vagueness arises in the recruitment process when the data obtained is hesitant. The analogous educational norms among the candidates may increase its complexity. Evaluation techniques focus on leveling hypersoft sets for grading several alternatives based on multi-arguments. When several alternatives have an identical status, such grading systems frequently encounter problems, making it challenging for decision-makers to select the preeminent alternative. This settlement of such an issue is the basis of this article. Thus, in this study, first the axiomatic notions of similarity measures between IVFHSSs \mathbb{IVFHSS}s are characterized, and then their relevant theorem is proved. In order to provide a consistent decision-support framework for the recruitment process, a robust algorithm is proposed. Finally, the effectiveness, feasibility, and efficiency of the proposed model are demonstrated through the depiction of recruitment-based pattern recognition

    Fuzzy decision making method based on CoCoSo with critic for financial risk evaluation

    Get PDF
    The financial risk evaluation is critically vital for enterprises to identify the potential financial risks, provide decision basis for financial risk management, and prevent and reduce risk losses. In the case of considering financial risk assessment, the basic problems that arise are related to strong fuzziness, ambiguity and inaccuracy. q-rung orthopair fuzzy set (q-ROFS), portrayed by the degrees of membership and non-membership, is a more resultful tool to seize fuzziness. In this article, the novel q-rung orthopair fuzzy score function is given for dealing the comparison problem. Later, the and operations are explored and their interesting properties are discussed. Then, the objective weights are calculated by CRITIC (Criteria Importance Through Inter-criteria Correlation). Moreover, we present combined weights that reflects both subjective preference and objective preference. In addition, the q-rung orthopair fuzzy MCDM (multi-criteria decision making) algorithm based on CoCoSo (Combined Compromise Solution) is presented. Finally, the feasibility of algorithm is stated by a financial risk evaluation example with corresponding sensitivity analysis. The salient features of the proposed algorithm are that they have no counter-intuitive case and have a stronger capacity in differentiating the best alternative. First published online 03 March 202

    Dynamic reference point method with probabilistic linguistic information based on the regret theory for public health emergency decision-making

    Get PDF
    Group emergency decision-making is an uncertain and dynamic process, in which the decision makers may be bounded rational and have a risk appetite. To depict the vague qualitative assessments, the probabilistic linguistic term sets are employed to express the perceptions of decision makers. First, considering the regret-aversion of the decision makers’ psychological characteristic, the value function and the regret-rejoice function in the regret theory are modified to adapt the probabilistic linguistic information. Second, the definition and aggregation operators of the probabilistic linguistic time variable are proposed to describe and aggregate the dynamic decision information. Third, the probabilistic linguistic models based on the dynamic reference point method and the regret theory are studied to maximise the expectation-levels of alternatives at the relative time point. The proposed method is applied to select the optimal response strategy for the outbreak of COVID-19 in China. Finally, the comparative analysis is designed to verify the applicability and reasonability of the proposed method

    A Decision Method for Online Purchases Considering Dynamic Information Preference Based on Sentiment Orientation Classification and Discrete DIFWA Operators

    Get PDF
    © 2013 IEEE. Online reviews are crucial for evaluating product features and supporting consumers' purchase decisions. However, as a result of online buying behaviors, consumer habits, and discrete dynamic distribution characteristics of online reviews, and consumers typically randomly choose a limited number of reviews from discrete time frames among all reviews and give more weight to recent review information and less weight to earlier information to support their online purchase decisions; moreover, existing studies have ignored the discrete random dynamic characteristics and dynamic information preferences of consumers. To address this issue, this paper proposes a method based on sentiment orientation classification and discrete DIFWA (DDIFWA) operators for online purchase decisions considering dynamic information preferences. In this method, we transformed review texts from original discrete time slices to discrete random features, extracted product features based on the constructed feature and sentiment dictionaries, and matched pairs of features and sentiment phrases in the dictionaries. We subsequently employed three types of semantic orientation by defining semantic rules to extract the product features of each review. Of note, the semantic orientations were transformed from discrete time to semantic intuitionistic fuzzy numbers and semantic intuitionistic fuzzy information matrixes. Furthermore, we proposed two DDIFWA operators to aggregate the dynamic semantic intuitionistic fuzzy information. Specifically, we obtained the rankings of alternative products and their features to support consumers' purchase decisions using the intuitionistic fuzzy scoring function and the 'vertical projection distance' method. Finally, comparisons and experiments are provided to demonstrate the plausibility of our methods

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria

    Full Issue

    Get PDF
    corecore