23,999 research outputs found

    Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Get PDF
    As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year), is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration) MODerate Resolution Imaging Spectroradiometer (MODIS). The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI) time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data

    Potential of using remote sensing techniques for global assessment of water footprint of crops

    Get PDF
    Remote sensing has long been a useful tool in global applications, since it provides physically-based, worldwide, and consistent spatial information. This paper discusses the potential of using these techniques in the research field of water management, particularly for ‘Water Footprint’ (WF) studies. The WF of a crop is defined as the volume of water consumed for its production, where green and blue WF stand for rain and irrigation water usage, respectively. In this paper evapotranspiration, precipitation, water storage, runoff and land use are identified as key variables to potentially be estimated by remote sensing and used for WF assessment. A mass water balance is proposed to calculate the volume of irrigation applied, and green and blue WF are obtained from the green and blue evapotranspiration components. The source of remote sensing data is described and a simplified example is included, which uses evapotranspiration estimates from the geostationary satellite Meteosat 9 and precipitation estimates obtained with the Climatic Prediction Center Morphing Technique (CMORPH). The combination of data in this approach brings several limitations with respect to discrepancies in spatial and temporal resolution and data availability, which are discussed in detail. This work provides new tools for global WF assessment and represents an innovative approach to global irrigation mapping, enabling the estimation of green and blue water use

    Monitoring urban growth and land use land cover change in Al Ain, UAE using remote sensing and GIS techniques

    Get PDF
    Urbanization and industrialization cause a serious land degradation problem, including an increased pressure on natural resources such as deforestation, rise in temperature and management of water resources. The Urban Heat Island (UHI) effects of urbanization are widely acknowledged. Increase of impervious surface is a surrogate measure of urbanization and their effects on local hydrology is well reported in literature. This study investigates the spatial-temporal dynamics of land use and land cover changes in Al Ain, UAE, from 2006 to 2016. The Landsat images of two different periods, i.e., Landsat ETM of 2006 and Landsat 8 for 2016 were acquired from earth explorer site. Semi-supervised known as the hybrid classification method was used for image classification. The change detection was carried out through post-classification techniques. The study area was categorized into five major classes. These are agriculture, gardens, urban, sandy areas and mixed urban/sandy areas. It was observed that agricultural and urban land increases from 42,560 ha to 45,950 ha (8%) and 8150 ha to 9105 ha (12%), respectively. Consequently, the natural sandy area was reduced. It was also found that the urban area was expanded dramatically in the west and southwest directions. The outcomes of this study would help concerning authorities for a sustainable land and water resources management in the Al Ain region

    Using the space-borne NASA scatterometer (NSCAT) to determine the frozen and thawed seasons

    Get PDF
    We hypothesize that the strong sensitivity of radar backscatter to surface dielectric properties, and hence to the phase (solid or liquid) of any water near the surface should make space-borne radar observations a powerful tool for large-scale spatial monitoring of the freeze/thaw state of the land surface, and thus ecosystem growing season length. We analyzed the NASA scatterometer (NSCAT) backscatter from September 1996 to June 1997, along with temperature and snow depth observations and ecosystem modeling, for three BOREAS sites in central Canada. Because of its short wavelength (2.14 cm), NSCAT was sensitive to canopy and surface water. NSCAT had 25 km spatial resolution and approximately twice-daily temporal coverage at the BOREAS latitude. At the northern site the NSCAT signal showed strong seasonality, with backscatter around −8 dB in winter and −12 dB in early summer and fall. The NSCAT signal for the southern sites had less seasonality. At all three sites there was a strong decrease in backscatter during spring thaw (4–6 dB). At the southern deciduous site, NSCAT backscatter rose from −11 to −9.2 dB during spring leaf-out. All sites showed 1–2 dB backscatter shifts corresponding to changes in landscape water state coincident with brief midwinter thaws, snowfall, and extreme cold (Tmax\u3c−25°C). Freeze/thaw detection algorithms developed for other radar instruments gave reasonable results for the northern site but were not successful at the two southern sites. We developed a change detection algorithm based on first differences of 5-day smoothed NSCAT backscatter measurements. This algorithm had some success in identifying the arrival of freezing conditions in the autumn and the beginning of thaw in the spring. Changes in surface freeze/thaw state generally coincided with the arrival and departure of the seasonal snow cover and with simulated shifts in the directions of net carbon exchange at each of the study sites

    Mapping evapotranspiration variability over a complex oasis-desert ecosystem based on automated calibration of Landsat 7 ETM+ data in SEBAL

    Get PDF
    Fragmented ecosystems of the desiccated Aral Sea seek answers to the profound local hydrologically- and water-related problems. Particularly, in the Small Aral Sea Basin (SASB), these problems are associated with low precipitation, increased temperature, land use and evapotranspiration (ET) changes. Here, the utility of high-resolution satellite dataset is employed to model the growing season dynamic of near-surface fluxes controlled by the advective effects of desert and oasis ecosystems in the SASB. This study adapted and applied the sensible heat flux calibration mechanism of Surface Energy Balance Algorithm for Land (SEBAL) to 16 clear-sky Landsat 7 ETM+ dataset, following a guided automatic pixels search from surface temperature T-s and Normalized Difference Vegetation Index NDVI (). Results were comprehensively validated with flux components and actual ET (ETa) outputs of Eddy Covariance (EC) and Meteorological Station (KZL) observations located in the desert and oasis, respectively. Compared with the original SEBAL, a noteworthy enhancement of flux estimations was achieved as follows: - desert ecosystem ETa R-2 = 0.94; oasis ecosystem ETa R-2 = 0.98 (P < 0.05). The improvement uncovered the exact land use contributions to ETa variability, with average estimates ranging from 1.24 mm to 6.98 mm . Additionally, instantaneous ET to NDVI (ETins-NDVI) ratio indicated that desert and oasis consumptive water use vary significantly with time of the season. This study indicates the possibility of continuous daily ET monitoring with considerable implications for improving water resources decision support over complex data-scarce drylands

    Identifying and Forecasting Potential Biophysical Risk Areas within a Tropical Mangrove Ecosystem Using Multi-Sensor Data

    Get PDF
    Mangroves are one of the most productive ecosystems known for provisioning of various ecosystem goods and services. They help in sequestering large amounts of carbon, protecting coastline against erosion, and reducing impacts of natural disasters such as hurricanes. Bhitarkanika Wildlife Sanctuary in Odisha harbors the second largest mangrove ecosystem in India. This study used Terra, Landsat and Sentinel-1 satellite data for spatio-temporal monitoring of mangrove forest within Bhitarkanika Wildlife Sanctuary between 2000 and 2016. Three biophysical parameters were used to assess mangrove ecosystem health: leaf chlorophyll (CHL), Leaf Area Index (LAI), and Gross Primary Productivity (GPP). A long-term analysis of meteorological data such as precipitation and temperature was performed to determine an association between these parameters and mangrove biophysical characteristics. The correlation between meteorological parameters and mangrove biophysical characteristics enabled forecasting of mangrove health and productivity for year 2050 by incorporating IPCC projected climate data. A historical analysis of land cover maps was also performed using Landsat 5 and 8 data to determine changes in mangrove area estimates in years 1995, 2004 and 2017. There was a decrease in dense mangrove extent with an increase in open mangroves and agricultural area. Despite conservation efforts, the current extent of dense mangrove is projected to decrease up to 10% by the year 2050. All three biophysical characteristics including GPP, LAI and CHL, are projected to experience a net decrease of 7.7%, 20.83% and 25.96% respectively by 2050 compared to the mean annual value in 2016. This study will help the Forest Department, Government of Odisha in managing and taking appropriate decisions for conserving and sustaining the remaining mangrove forest under the changing climate and developmental activities

    Regional estimation of daily to annual regional evapotranspiration with MODIS data in the Yellow River Delta wetland

    Get PDF
    Evapotranspiration (ET) from the wetland of the Yellow River Delta (YRD) is one of the important components in the water cycle, which represents the water consumption by the plants and evaporation from the water and the non-vegetated surfaces. Reliable estimates of the total evapotranspiration from the wetland is useful information both for understanding the hydrological process and for water management to protect this natural environment. Due to the heterogeneity of the vegetation types and canopy density and of soil water content over the wetland (specifically over the natural reserve areas), it is difficult to estimate the regional evapotranspiration extrapolating measurements or calculations usually done locally for a specific land cover type. Remote sensing can provide observations of land surface conditions with high spatial and temporal resolution and coverage. In this study, a model based on the Energy Balance method was used to calculate daily evapotranspiration (ET) using instantaneous observations of land surface reflectance and temperature from MODIS when the data were available on clouds-free days. A time series analysis algorithm was then applied to generate a time series of daily ET over a year period by filling the gaps in the observation series due to clouds. A detailed vegetation classification map was used to help identifying areas of various wetland vegetation types in the YRD wetland. Such information was also used to improve the parameterizations in the energy balance model to improve the accuracy of ET estimates. This study showed that spatial variation of ET was significant over the same vegetation class at a given time and over different vegetation types in different seasons in the YRD wetlan

    Integrated basin modeling

    Get PDF
    Simulation models / Irrigation management / Water balance / Groundwater / River basins / Hydrology / Flow / Evapotranspiration / Precipitation / Soils / Turkey / Gediz Basin

    Agricultural scene understanding

    Get PDF
    The author has identified the following significant results. The LACIE field measurement data were radiometrically calibrated. Calibration enabled valid comparisons of measurements from different dates, sensors, and/or locations. Thermal band canopy results included: (1) Wind velocity had a significant influence on the overhead radiance temperature and the effect was quantized. Biomass and soil temperatures, temperature gradient, and canopy geometry were altered. (2) Temperature gradient was a function of wind velocity. (3) Temperature gradient of the wheat canopy was relatively constant during the day. (4) The laser technique provided good quality geometric characterization
    • …
    corecore