5,088 research outputs found

    Ransomware in High-Risk Environments

    Get PDF
    In today’s modern world, cybercrime is skyrocketing globally, which impacts a variety of organizations and endpoint users. Hackers are using a multitude of approaches and tools, including ransomware threats, to take over targeted systems. These acts of cybercrime lead to huge damages in areas of business, healthcare systems, industry sectors, and other fields. Ransomware is considered as a high risk threat, which is designed to hijack the data. This paper is demonstrating the ransomware types, and how they are evolved from the malware and trojan codes, which is used to attack previous incidents, and explains the most common encryption algorithms such as AES, and RSA, ransomware uses them during infection process in order to produce complex threats. The practical approach for data encryption uses python programming language to show the efficiency of those algorithms in real attacks by executing this section on Ubuntu virtual machine. Furthermore, this paper analyzes programming languages, which is used to build ransomware. An example of ransomware code is being demonstrated in this paper, which is written specifically in C sharp language, and it has been tested out on windows operating system using MS visual studio. So, it is very important to recognize the system vulnerability, which can be very useful to prevent the ransomware. In contrast, this threat might sneak into the system easily, allowing for a ransom to be demanded. Therefore, understanding ransomware anatomy can help us to find a better solution in different situations. Consequently, this paper shows a number of outstanding removal techniques to get rid from ransomware attacks in the system

    Ransomware in High-Risk Environments

    Get PDF
    In today’s modern world, cybercrime is skyrocketing globally, which impacts a variety of organizations and endpoint users. Hackers are using a multitude of approaches and tools, including ransomware threats, to take over targeted systems. These acts of cybercrime lead to huge damages in areas of business, healthcare systems, industry sectors, and other fields. Ransomware is considered as a high risk threat, which is designed to hijack the data. This paper is demonstrating the ransomware types, and how they are evolved from the malware and trojan codes, which is used to attack previous incidents, and explains the most common encryption algorithms such as AES, and RSA, ransomware uses them during infection process in order to produce complex threats. The practical approach for data encryption uses python programming language to show the efficiency of those algorithms in real attacks by executing this section on Ubuntu virtual machine. Furthermore, this paper analyzes programming languages, which is used to build ransomware. An example of ransomware code is being demonstrated in this paper, which is written specifically in C sharp language, and it has been tested out on windows operating system using MS visual studio. So, it is very important to recognize the system vulnerability, which can be very useful to prevent the ransomware. In contrast, this threat might sneak into the system easily, allowing for a ransom to be demanded. Therefore, understanding ransomware anatomy can help us to find a better solution in different situations. Consequently, this paper shows a number of outstanding removal techniques to get rid from ransomware attacks in the system

    Enriched multi objective optimization model based cloud disaster recovery

    Get PDF
    AbstractIn cloud computing massive data storage is one of the great challenging tasks in term of reliable storage of sensitive data and quality of storage service. Among various cloud safety issues, the data disaster recovery is the most significant issue which is required to be considered. Thus, in this paper, analysis of massive data storage process in the cloud environment is performed and the massive data storage cost is based on the data storage price, communication cost and data migration cost. The data storage reliability involves of data transmission, hardware dependability and reliability. Reliable massive storage is proposed by using Enriched Multi Objective Optimization Model (EMOOM). The main objective of this proposed optimization model is using Enriched Genetic Algorithm (EGA) for efficient Disaster Recovery in a cloud environment. Finally, the experimental results show that the proposed EMOOM model is effective and positive and reliable
    • …
    corecore