194 research outputs found

    Optimal placement of Femto base stations in enterprise femtocell networks

    Get PDF
    Femto cells a.k.a. Low Power Nodes (LPNs) are deployed to improve indoor data rates as well as reduce traffic load on macro Base Stations (BSs) in 4G/LTE cellular networks. Indoor UEs getting high SNR (Signal-to-Noise Ratio) can experience good throughput, but SNR decreases at faster rate due to obstacles, present along the communication path. Hence, efficient placement of Femtos in enterprise buildings is crucial to attain desirable SNR for indoor users. We consider obstacles and shadowing effects by walls and include them in the system model. We develop a Linear Programming Problem (LPP) model by converting convex constraints into linear ones and solve it using GAMS tool, to place Femtos optimally inside the building. Our extensive experimentation proves the optimal placement of Femtos achieves 14.41% and 35.95% increase in SNR of indoor UEs over random and center placement strategies, respectively

    On placement and dynamic power control of femtocells in LTE HetNets

    Get PDF
    Femto cells a.k.a. Low Power Nodes (LPNs) are used to improve indoor data rates as well as to reduce traffic load on macro Base Stations (BSs) in LTE cellular networks. These LPNs are deployed inside office buildings and residential apartment complexes to provide high data rates to indoor Users. With high SINR (Signal-to-Interference plus Noise Ratio) the users experience good throughput, but the SINR decreases significantly because of interference and obstacles such as building walls, present in the communication path. So, efficient placement of Femtos in buildings while considering Macro-Femto interference is very crucial for attaining desirable SINR. At the same time, minimizing the power leakage in order to improve the signal strength of outdoor users in a high interference (HIZone) around the building area is important. In our work, we have considered obstacles (walls, floors) and interference between Macro and Femto BSs. To be fair to both indoor and outdoor users, we designed an efficient placement and power control SON (Self organizing Network) algorithm which optimally places Femtos and dynamically adjusts the transmission power of Femtos based on the occupancy of Macro users in the HIZone. To do this, we solve two Mixed Integer Programming (MIP) methods namely: Minimize number of Femtos (MinNF) method which guarantees threshold SINR (SINRTh) -2dB for all indoor users and optimal Femto power (OptFP) allocation method which guarantees SINRTh (- 4 dB) for indoor users with the Macro users SINR degradation as lesser than 2dB

    Modeling and Optimization of Next-Generation Wireless Access Networks

    Get PDF
    The ultimate goal of the next generation access networks is to provide all network users, whether they are fixed or mobile, indoor or outdoor, with high data rate connectivity, while ensuring a high quality of service. In order to realize this ambitious goal, delay, jitter, error rate and packet loss should be minimized: a goal that can only be achieved through integrating different technologies, including passive optical networks, 4th generation wireless networks, and femtocells, among others. This thesis focuses on medium access control and physical layers of future networks. In this regard, the first part of this thesis discusses techniques to improve the end-to-end quality of service in hybrid optical-wireless networks. In these hybrid networks, users are connected to a wireless base station that relays their data to the core network through an optical connection. Hence, by integrating wireless and optical parts of these networks, a smart scheduler can predict the incoming traffic to the optical network. The prediction data generated herein is then used to propose a traffic-aware dynamic bandwidth assignment algorithm for reducing the end-to-end delay. The second part of this thesis addresses the challenging problem of interference management in a two-tier macrocell/femtocell network. A high quality, high speed connection for indoor users is ensured only if the network has a high signal to noise ratio. A requirement that can be fulfilled with using femtocells in cellular networks. However, since femtocells generate harmful interference to macrocell users in proximity of them, careful analysis and realistic models should be developed to manage the introduced interference. Thus, a realistic model for femtocell interference outside suburban houses is proposed and several performance measures, e.g., signal to interference and noise ratio and outage probability are derived mathematically for further analysis. The quality of service of cellular networks can be degraded by several factors. For example, in industrial environments, simultaneous fading and strong impulsive noise significantly deteriorate the error rate performance. In the third part of this thesis, a technique to improve the bit error rate of orthogonal frequency division multiplexing systems in industrial environments is presented. This system is the most widely used technology in next-generation networks, and is very susceptible to impulsive noise, especially in fading channels. Mathematical analysis proves that the proposed method can effectively mitigate the degradation caused by impulsive noise and significantly improve signal to interference and noise ratio and bit error rate, even in frequency-selective fading channels

    Techno-economical Analysis of Indoor Enterprise Solutions

    Get PDF

    Integration of a genetic optimisation algorithm in a simulation framework for optimising femtocell networks.

    Get PDF
    The developments in mobile communication systems from 1G to 4G have increased demands on the network due to the increased number of devices and increasing volume of data and 5G is expected to significantly increase demands further. Therefore, networks need to be more efficient to deliver the expected increase in volume. An energy and cost efficient way to cope with such an anticipated increase in the demand of voice and data is the dense deployment of small cells i.e. femtocells. Femtocells are identified as a crucial way to the delivery of the increased demands for heterogeneous networks in which macrocells work in combination with femtocells to provide coverage to offices, homes and enterprise. A survey of the literature is conducted to examine the mechanisms and approaches different authors have used to optimise the network. One of the major activities in this project before the transfer was the identification of the parameters. The literature was analysed and key performance parameters were identified. Based on the identified key performance parameters, a simulation framework is used to perform the experiments and to analyse the performance of a two-tier LTE-A system having femtocell overlays. A comprehensive and easy to use graphical user interface has been set up with the desired two- tier network topologies. It estimates the throughput and path loss of all the femto and macro users for all the supported bandwidths of an LTE-A system using different modulation schemes. A series of tests are carried out using the described simulation framework for a range of scenarios. The modulation scheme that yield highest throughput for a femtocell user is identified, and path loss is found to be independent from the modulation scheme but is dependent on the distance from its base station. In another series of experiments, the effects that walls inside buildings have on connectivity are examined and positioning of the femtocells is changed for each scenario inside buildings to analyse the performance. These results are used to find the optimised location of femtocells in different room layouts of the building. The simulation framework is further developed to be able to optimise the whole femtocell network by finding the optimised positioning of femtocells using the genetic optimisation algorithm. The end user can provide the inputs of the desired network topology to the simulation framework through a graphical user interface. The throughput and path loss of all the femto users are calculated before and after optimisation. The simulation results are generated in the form of tables before and after optimisation for comparison and analysis. The layouts depicting the indoor environment of the building before and after optimisation can be seen and analysed through the graphical user interface developed as a part of this simulation framework. Two case studies are defined and described to test the capacity and capability of the developed simulation framework and to show how the simulation framework can be used to identify the optimum positions of the femtocells under different configurations of room designs and number of users that represent contrasting loads on the network. Any desired network topology can be created and analysed on the basis of throughput and path loss by using this simulation framework to optimise the femtocell networks in an indoor environment of the building. The results of the experiments are compared against the claims in other published research

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Evaluate and Optimise Wireless Communication Performance for Typical Buildings

    Get PDF
    It is predicted that mobile traffic, mainly taking place indoors, will increase up to 1000 times in the next decade. Future smart buildings/cities will be connected through wireless communication systems. High capacity and reliable wireless communications will play a very important role in future smart building/city. In telecommunications, a femtocell is a small, low-power cellular base station, typically designed for use in a home or small business. It allows service providers to extend service coverage indoors or at the cell edge, especially where access would be limited or unavailable. Since its first commercial deployment by Sprint Nextel Corporation in 2008, femtocell has continued to gain momentum with mobile network operators in America, Asia and Europe. Plenty of phone calls are placed indoor, and the technology is now deployed for residential and commercial use. But, so far, it is not well known how the wireless performance is related to building structures and material properties, and the building design process has not taken into consideration of wireless performance, resulting in poor wireless performance in some passive buildings. In this M.Phil. thesis, first, a set of wireless performance metrics is designed to measure the wireless performance in buildings; second, different building models focus on coverage and capacity are simulated and analysed to compare the influences of typical building structures; third, novel ways to improve building wireless performance will be investigated

    Energy Efficiency

    Get PDF
    This book is one of the most comprehensive and up-to-date books written on Energy Efficiency. The readers will learn about different technologies for energy efficiency policies and programs to reduce the amount of energy. The book provides some studies and specific sets of policies and programs that are implemented in order to maximize the potential for energy efficiency improvement. It contains unique insights from scientists with academic and industrial expertise in the field of energy efficiency collected in this multi-disciplinary forum

    5G and beyond networks

    Get PDF
    This chapter investigates the Network Layer aspects that will characterize the merger of the cellular paradigm and the IoT architectures, in the context of the evolution towards 5G-and-beyond, including some promising emerging services as Unmanned Aerial Vehicles or Base Stations, and V2X communications
    corecore