4,859 research outputs found

    Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory Representations

    Full text link
    Sensor gloves are popular input devices for a large variety of applications including health monitoring, control of music instruments, learning sign language, dexterous computer interfaces, and tele-operating robot hands. Many commercial products as well as low-cost open source projects have been developed. We discuss here how low-cost (approx. 250 EUROs) sensor gloves with force feedback can be build, provide an open source software interface for Matlab and present first results in learning object manipulation skills through imitation learning on the humanoid robot iCub.Comment: 3 pages, 3 figures. Workshop paper of the International Conference on Robotics and Automation (ICRA 2015

    Computation in Classical Mechanics

    Full text link
    There is a growing consensus that physics majors need to learn computational skills, but many departments are still devoid of computation in their physics curriculum. Some departments may lack the resources or commitment to create a dedicated course or program in computational physics. One way around this difficulty is to include computation in a standard upper-level physics course. An intermediate classical mechanics course is particularly well suited for including computation. We discuss the ways we have used computation in our classical mechanics courses, focusing on how computational work can improve students' understanding of physics as well as their computational skills. We present examples of computational problems that serve these two purposes. In addition, we provide information about resources for instructors who would like to include computation in their courses.Comment: 6 pages, 3 figures, submitted to American Journal of Physic

    JIDT: An information-theoretic toolkit for studying the dynamics of complex systems

    Get PDF
    Complex systems are increasingly being viewed as distributed information processing systems, particularly in the domains of computational neuroscience, bioinformatics and Artificial Life. This trend has resulted in a strong uptake in the use of (Shannon) information-theoretic measures to analyse the dynamics of complex systems in these fields. We introduce the Java Information Dynamics Toolkit (JIDT): a Google code project which provides a standalone, (GNU GPL v3 licensed) open-source code implementation for empirical estimation of information-theoretic measures from time-series data. While the toolkit provides classic information-theoretic measures (e.g. entropy, mutual information, conditional mutual information), it ultimately focusses on implementing higher-level measures for information dynamics. That is, JIDT focusses on quantifying information storage, transfer and modification, and the dynamics of these operations in space and time. For this purpose, it includes implementations of the transfer entropy and active information storage, their multivariate extensions and local or pointwise variants. JIDT provides implementations for both discrete and continuous-valued data for each measure, including various types of estimator for continuous data (e.g. Gaussian, box-kernel and Kraskov-Stoegbauer-Grassberger) which can be swapped at run-time due to Java's object-oriented polymorphism. Furthermore, while written in Java, the toolkit can be used directly in MATLAB, GNU Octave, Python and other environments. We present the principles behind the code design, and provide several examples to guide users.Comment: 37 pages, 4 figure

    Integration of Multimedia Interactive Web Tools with In-Class Active Learning

    Get PDF
    In this paper, we present our experience with an introduction to engineering course in which we used a combination of active and collaborative teaching methods, multimedia web-based material, and web-based interactive tools. The students were engaged in active learning in class with methods such as demonstrations, hands-on work, and group work. After class, the students used the web-based material that we developed, such as multiple choice quizzes, interactive applets, and animations. We have also developed a number of web-based course management tools that were used by the course instructors. We conclude that both the students and instructors had a very positive experience from using this combination of methods

    An Agent-Based Spatially Explicit Epidemiological Model in MASON

    Get PDF
    This paper outlines the design and implementation of an agent-based epidemiological simulation system. The system was implemented in the MASON toolkit, a set of Java-based agent-simulation libraries. This epidemiological simulation system is robust and extensible for multiple applications, including classroom demonstrations of many types of epidemics and detailed numerical experimentation on a particular disease. The application has been made available as an applet on the MASON web site, and as source code on the author\'s web site.Epidemiology, Social Networks, Agent-Based Simulation, MASON Toolkit

    SupWSD: a flexible toolkit for supervised word sense disambiguation

    Get PDF
    In this demonstration we present SupWSD, a Java API for supervised Word Sense Disambiguation (WSD). This toolkit includes the implementation of a state-of-the-art supervised WSD system, together with a Natural Language Processing pipeline for preprocessing and feature extraction. Our aim is to provide an easy-to-use tool for the research community, designed to be modular, fast and scalable for training and testing on large datasets. The source code of SupWSD is available at http://github.com/SI3P/SupWSD

    Description and Experience of the Clinical Testbeds

    Get PDF
    This deliverable describes the up-to-date technical environment at three clinical testbed demonstrator sites of the 6WINIT Project, including the adapted clinical applications, project components and network transition technologies in use at these sites after 18 months of the Project. It also provides an interim description of early experiences with deployment and usage of these applications, components and technologies, and their clinical service impact

    Teaching programming at a distance: the Internet software visualization laboratory

    Get PDF
    This paper describes recent developments in our approach to teaching computer programming in the context of a part-time Masters course taught at a distance. Within our course, students are sent a pack which contains integrated text, software and video course material, using a uniform graphical representation to tell a consistent story of how the programming language works. The students communicate with their tutors over the phone and through surface mail. Through our empirical studies and experience teaching the course we have identified four current problems: (i) students' difficulty mapping between the graphical representations used in the course and the programs to which they relate, (ii) the lack of a conversational context for tutor help provided over the telephone, (iii) helping students who due to their other commitments tend to study at 'unsociable' hours, and (iv) providing software for the constantly changing and expanding range of platforms and operating systems used by students. We hope to alleviate these problems through our Internet Software Visualization Laboratory (ISVL), which supports individual exploration, and both synchronous and asynchronous communication. As a single user, students are aided by the extra mappings provided between the graphical representations used in the course and their computer programs, overcoming the problems of the original notation. ISVL can also be used as a synchronous communication medium whereby one of the users (generally the tutor) can provide an annotated demonstration of a program and its execution, a far richer alternative to technical discussions over the telephone. Finally, ISVL can be used to support asynchronous communication, helping students who work at unsociable hours by allowing the tutor to prepare short educational movies for them to view when convenient. The ISVL environment runs on a conventional web browser and is therefore platform independent, has modest hardware and bandwidth requirements, and is easy to distribute and maintain. Our planned experiments with ISVL will allow us to investigate ways in which new technology can be most appropriately applied in the service of distance education
    • …
    corecore