407 research outputs found

    Evolutionary perspectives in computer music

    Get PDF
    This paper presents a brief overview of music evolution - western and non-western music - from its genesis to serialism and the Darmstadt school. Some mathematical aspects of music are then presented and confronted with music as a form of art. Some questions follow: are these two (very) distinct aspects compatible? Can computers be of real help in automatic composition? Evolutionaty Algorithms (EAs) - Genetic Algorithms (GAs), Genetic Programming (GP), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) - are then introduced and some results of GAs and GPs application to music generation are analysed. Variable fitness functions and PSO application seems a promising way to explore. However, what output should be envisaged? Should we expect that computer music sounds as human music, or should we look for a totally different way to explore and listen? How far can go computer creativity and in what direction?N/

    L-Music: uma abordagem para composição musical assistida usando L-Systems

    Get PDF
    Generative music systems have been researched for an extended period of time. The scientific corpus of this research field is translating, currently, into the world of the everyday musician and composer. With these tools, the creative process of writing music can be augmented or completely replaced by machines. The work in this document aims to contribute to research in assisted music composition systems. To do so, a review on the state of the art of these fields was performed and we found that a plethora of methodologies and approaches each provide their own interesting results (to name a few, neural networks, statistical models, and formal grammars). We identified Lindenmayer Systems, or L-Systems, as the most interesting and least explored approach to develop an assisted music composition system prototype, aptly named L-Music, due to the ability of producing complex outputs from simple structures. L-Systems were initially proposed as a parallel string rewriting grammar to model algae plant growth. Their applications soon turned graphical (e.g., drawing fractals), and eventually they were applied to music generation. Given that our prototype is assistive, we also took the user interface and user experience design into its well-deserved consideration. Our implemented interface is straightforward, simple to use with a structured visual hierarchy and flow and enables musicians and composers to select their desired instruments; select L-Systems for generating music or create their own custom ones and edit musical parameters (e.g., scale and octave range) to further control the outcome of L-Music, which is musical fragments that a musician or composer can then use in their own works. Three musical interpretations on L-Systems were implemented: a random interpretation, a scale-based interpretation, and a polyphonic interpretation. All three approaches produced interesting musical ideas, which we found to be potentially usable by musicians and composers in their own creative works. Although positive results were obtained, the developed prototype has many improvements for future work. Further musical interpretations can be added, as well as increasing the number of possible musical parameters that a user can edit. We also identified the possibility of giving the user control over what musical meaning L-Systems have as an interesting future challenge.Sistemas de geração de música têm sido alvo de investigação durante períodos alargados de tempo. Recentemente, tem havido esforços em passar o conhecimento adquirido de sistemas de geração de música autónomos e assistidos para as mãos do músico e compositor. Com estas ferramentas, o processo criativo pode ser enaltecido ou completamente substituído por máquinas. O presente trabalho visa contribuir para a investigação de sistemas de composição musical assistida. Para tal, foi efetuado um estudo do estado da arte destas temáticas, sendo que foram encontradas diversas metodologias que ofereciam resultados interessantes de um ponto de vista técnico e musical. Os sistemas de Lindenmayer, ou L-Systems, foram selecionados como a abordagem mais interessante, e menos explorada, para desenvolver um protótipo de um sistema de composição musical assistido com o nome L-Music, devido à sua capacidade de produzirem resultados complexos a partir de estruturas simples. Os L-Systems, inicialmente propostos para modelar o crescimento de plantas de algas, são gramáticas formais, cujo processo de reescrita de strings acontece de forma paralela. As suas aplicações rapidamente evoluíram para interpretações gráficas (p.e., desenhar fractais), e eventualmente também foram aplicados à geração de música. Dada a natureza assistida do protótipo desenvolvido, houve uma especial atenção dada ao design da interface e experiência do utilizador. Esta, é concisa e simples, tendo uma hierarquia visual estruturada para oferecer uma orientação coesa ao utilizador. Neste protótipo, os utilizadores podem selecionar instrumentos; selecionar L-Systems ou criar os seus próprios, e editar parâmetros musicais (p.e., escala e intervalo de oitavas) de forma a gerarem excertos musicais que possam usar nas suas próprias composições. Foram implementadas três interpretações musicais de L-Systems: uma interpretação aleatória, uma interpretação à base de escalas e uma interpretação polifónica. Todas as interpretações produziram resultados musicais interessantes, e provaram ter potencial para serem utilizadas por músicos e compositores nos seus trabalhos criativos. Embora tenham sido alcançados resultados positivos, o protótipo desenvolvido apresenta múltiplas melhorias para trabalho futuro. Entre elas estão, por exemplo, a adição de mais interpretações musicais e a adição de mais parâmetros musicais editáveis pelo utilizador. A possibilidade de um utilizador controlar o significado musical de um L-System também foi identificada como uma proposta futura relevante

    ENSA dataset: a dataset of songs by non-superstar artists tested with an emotional analysis based on time-series

    Get PDF
    This paper presents a novel dataset of songs by non-superstar artists in which a set of musical data is collected, identifying for each song its musical structure, and the emotional perception of the artist through a categorical emotional labeling process. The generation of this preliminary dataset is motivated by the existence of biases that have been detected in the analysis of the most used datasets in the field of emotion-based music recommendation. This new dataset contains 234 min of audio and 60 complete and labeled songs. In addition, an emotional analysis is carried out based on the representation of dynamic emotional perception through a time-series approach, in which the similarity values generated by the dynamic time warping (DTW) algorithm are analyzed and then used to implement a clustering process with the K-means algorithm. In the same way, clustering is also implemented with a Uniform Manifold Approximation and Projection (UMAP) technique, which is a manifold learning and dimension reduction algorithm. The algorithm HDBSCAN is applied for determining the optimal number of clusters. The results obtained from the different clustering strategies are compared and, in a preliminary analysis, a significant consistency is found between them. With the findings and experimental results obtained, a discussion is presented highlighting the importance of working with complete songs, preferably with a well-defined musical structure, considering the emotional variation that characterizes a song during the listening experience, in which the intensity of the emotion usually changes between verse, bridge, and chorus

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Hierarchical categorisation of web tags for Delicious

    Get PDF
    In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. The benefits of social tagging are clear – tags enhance Web content browsing and search. However, since these tags may be publicly available to any Internet user, a privacy attacker may collect this information and extract an accurate snapshot of users’ interests or user profiles, containing sensitive information, such as health-related information, political preferences, salary or religion. In order to hinder attackers in their efforts to profile users, this report focuses on the practical aspects of capturing user interests from their tagging activity. More accurately, we study how to categorise a collection of tags posted by users in one of the most popular bookmarking services, Delicious (http://delicious.com).Preprin

    INSAM Journal of Contemporary Music, Art and Technology 2

    Get PDF
    The subject of machine learning and creativity, as well as its appropriation in arts is the focus of this issue with our Main theme of – Artificial Intelligence in Music, Arts, and Theory. In our invitation to collaborators, we discussed our standing preoccupation with the exploration of technology in contemporary theory and artistic practice. The invitation also noted that this time we are encouraged and inspired by Catherine Malabou’s new observations regarding brain plasticity and the metamorphosis of (natural and artificial) intelligence. Revising her previous stance that the difference between brain plasticity and computational architecture is not authentic and grounded, Malabou admits in her new book, Métamorphoses de l'intelligence: Que faire de leur cerveau bleu? (2017), that plasticity – the potential of neuron architecture to be shaped by environment, habits, and education – can also be a feature of artificial intelligence. “The future of artificial intelligence,” she writes, “is biological.” We wanted to provoke a debate about what machines can learn and what we can learn from them, especially regarding contemporary art practices. On this note, I am happy to see that our proposition has provoked intriguing and unique responses from various different disciplines including: theory of art, aesthetics of music, musicology, and media studies. The pieces in the (Inter)view section deal with machine and computational creativity, as well as the some of the principles of contemporary art. Reviews give us an insight into a couple of relevant reading points for this discussion and a retrospective of one engaging festival that also fits this theme

    Amergent Music: behavior and becoming in technoetic & media arts

    Get PDF
    Merged with duplicate records 10026.1/1082 and 10026.1/2612 on 15.02.2017 by CS (TIS)Technoetic and media arts are environments of mediated interaction and emergence, where meaning is negotiated by individuals through a personal examination and experience—or becoming—within the mediated space. This thesis examines these environments from a musical perspective and considers how sound functions as an analog to this becoming. Five distinct, original musical works explore the possibilities as to how the emergent dynamics of mediated, interactive exchange can be leveraged towards the construction of musical sound. In the context of this research, becoming can be understood relative to Henri Bergson’s description of the appearance of reality—something that is making or unmaking but is never made. Music conceived of a linear model is essentially fixed in time. It is unable to recognize or respond to the becoming of interactive exchange, which is marked by frequent and unpredictable transformation. This research abandons linear musical approaches and looks to generative music as a way to reconcile the dynamics of mediated interaction with a musical listening experience. The specifics of this relationship are conceptualized in the structaural coupling model, which borrows from Maturana & Varela’s “structural coupling.” The person interacting and the generative musical system are compared to autopoietic unities, with each responding to mutual perturbations while maintaining independence and autonomy. Musical autonomy is sustained through generative techniques and organized within a psychogeographical framework. In the way that cities invite use and communicate boundaries, the individual sounds of a musical work create an aural context that is legible to the listener, rendering the consequences or implications of any choice audible. This arrangement of sound, as it relates to human presence in a technoetic environment, challenges many existing assumptions, including the idea “the sound changes.” Change can be viewed as a movement predicated by behavior. Amergent music is brought forth through kinds of change or sonic movement more robustly explored as a dimension of musical behavior. Listeners hear change, but it is the result of behavior that arises from within an autonomous musical system relative to the perturbations sensed within its environment. Amergence propagates through the effects of emergent dynamics coupled to the affective experience of continuous sonic transformation.Rutland Port Authoritie

    Flocks, Swarms, Crowds, and Societies: On the Scope and Limits of Cognition

    Get PDF
    Traditionally, the concept of cognition has been tied to the brain or the nervous system. Recent work in various noncomputational cognitive sciences has enlarged the category of “cognitive phenomena” to include the organism and its environment, distributed cognition across networks of actors, and basic cellular functions. The meaning, scope, and limits of ‘cognition’ are no longer clear or well-defined. In order to properly delimit the purview of the cognitive sciences, there is a strong need for a clarification of the definition of cognition. This paper will consider the outer bounds of that definition. Not all cognitive behaviors of a given organism are amenable to an analysis at the organismic or organism-environment level. In some cases, emergent cognition in collective biological and human social systems arises that is irreducible to the sum cognitions of their constituent entities. The group and social systems under consideration are more extensive and inclusive than those considered in studies of distributed cognition to date. The implications for this ultimately expand the purview of the cognitive sciences and bring back a renewed relevance for anthropology and introduce sociology on the traditional six-pronged interdisciplinary wheel of the cognitive sciences

    Hierarchical categorisation of tags for delicious

    Get PDF
    In the scenario of social bookmarking, a user browsing the Web bookmarks web pages and assigns free-text labels (i.e., tags) to them according to their personal preferences. In this technical report, we approach one of the practical aspects when it comes to represent users' interests from their tagging activity, namely the categorization of tags into high-level categories of interest. The reason is that the representation of user profiles on the basis of the myriad of tags available on the Web is certainly unfeasible from various practical perspectives; mainly concerning the unavailability of data to reliably, accurately measure interests across such fine-grained categorisation, and, should the data be available, its overwhelming computational intractability. Motivated by this, our study presents the results of a categorization process whereby a collection of tags posted at Delicious #http://delicious.com# are classified into 200 subcategories of interest.Preprin

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements
    corecore