500 research outputs found

    Algorithm and Hardware Design of Discrete-Time Spiking Neural Networks Based on Back Propagation with Binary Activations

    Full text link
    We present a new back propagation based training algorithm for discrete-time spiking neural networks (SNN). Inspired by recent deep learning algorithms on binarized neural networks, binary activation with a straight-through gradient estimator is used to model the leaky integrate-fire spiking neuron, overcoming the difficulty in training SNNs using back propagation. Two SNN training algorithms are proposed: (1) SNN with discontinuous integration, which is suitable for rate-coded input spikes, and (2) SNN with continuous integration, which is more general and can handle input spikes with temporal information. Neuromorphic hardware designed in 40nm CMOS exploits the spike sparsity and demonstrates high classification accuracy (>98% on MNIST) and low energy (48.4-773 nJ/image).Comment: 2017 IEEE Biomedical Circuits and Systems (BioCAS

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Energy Efficient Hardware Design of Neural Networks

    Get PDF
    abstract: Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification.Dissertation/ThesisMasters Thesis Electrical Engineering 201

    Empirical study on the efficiency of Spiking Neural Networks with axonal delays, and algorithm-hardware benchmarking

    Full text link
    The role of axonal synaptic delays in the efficacy and performance of artificial neural networks has been largely unexplored. In step-based analog-valued neural network models (ANNs), the concept is almost absent. In their spiking neuroscience-inspired counterparts, there is hardly a systematic account of their effects on model performance in terms of accuracy and number of synaptic operations.This paper proposes a methodology for accounting for axonal delays in the training loop of deep Spiking Neural Networks (SNNs), intending to efficiently solve machine learning tasks on data with rich temporal dependencies. We then conduct an empirical study of the effects of axonal delays on model performance during inference for the Adding task, a benchmark for sequential regression, and for the Spiking Heidelberg Digits dataset (SHD), commonly used for evaluating event-driven models. Quantitative results on the SHD show that SNNs incorporating axonal delays instead of explicit recurrent synapses achieve state-of-the-art, over 90% test accuracy while needing less than half trainable synapses. Additionally, we estimate the required memory in terms of total parameters and energy consumption of accomodating such delay-trained models on a modern neuromorphic accelerator. These estimations are based on the number of synaptic operations and the reference GF-22nm FDX CMOS technology. As a result, we demonstrate that a reduced parameterization, which incorporates axonal delays, leads to approximately 90% energy and memory reduction in digital hardware implementations for a similar performance in the aforementioned task
    corecore