26,031 research outputs found

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    Evolutionary multi-objective workflow scheduling in Cloud

    Get PDF
    Cloud computing provides promising platforms for executing large applications with enormous computational resources to offer on demand. In a Cloud model, users are charged based on their usage of resources and the required quality of service (QoS) specifications. Although there are many existing workflow scheduling algorithms in traditional distributed or heterogeneous computing environments, they have difficulties in being directly applied to the Cloud environments since Cloud differs from traditional heterogeneous environments by its service-based resource managing method and pay-per-use pricing strategies. In this paper, we highlight such difficulties, and model the workflow scheduling problem which optimizes both makespan and cost as a Multi-objective Optimization Problem (MOP) for the Cloud environments. We propose an evolutionary multi-objective optimization (EMO)-based algorithm to solve this workflow scheduling problem on an infrastructure as a service (IaaS) platform. Novel schemes for problem-specific encoding and population initialization, fitness evaluation and genetic operators are proposed in this algorithm. Extensive experiments on real world workflows and randomly generated workflows show that the schedules produced by our evolutionary algorithm present more stability on most of the workflows with the instance-based IaaS computing and pricing models. The results also show that our algorithm can achieve significantly better solutions than existing state-of-the-art QoS optimization scheduling algorithms in most cases. The conducted experiments are based on the on-demand instance types of Amazon EC2; however, the proposed algorithm are easy to be extended to the resources and pricing models of other IaaS services.This work is supported by the National Science Foundation of China under Grand no. 61272420 and the Provincial Science Foundation of Jiangsu Grand no. BK2011022

    A TUNABLE WORKFLOW SCHEDULING ALGORITHM BASED ON PARTICLE SWARM OPTIMIZATION FOR CLOUD COMPUTING

    Get PDF
    Cloud computing provides a pool of virtualized computing resources and adopts pay-per-use model. Schedulers for cloud computing make decision on how to allocate tasks of workflow to those virtualized computing resources. In this report, I present a flexible particle swarm optimization (PSO) based scheduling algorithm to minimize both total cost and makespan. Experiment is conducted by varying computation of tasks, number of particles and weight values of cost and makespan in fitness function. The results show that the proposed algorithm achieves both low cost and makespan. In addition, it is adjustable according to different QoS constraints

    A Hybrid Grey Wolf Optimization and Constriction Factor based PSO Algorithm for Workflow Scheduling in Cloud

    Get PDF
    Due to its flexibility, scalability, and cost-effectiveness of cloud computing, it has emerged as a popular platform for hosting various applications. However, optimizing workflow scheduling in the cloud is still a challenging problem because of the dynamic nature of cloud resources and the diversity of user requirements. In this context, Particle Swarm Optimization (PSO) and Grey Wolf Optimization (GWO) algorithms have been proposed as effective techniques for improving workflow scheduling in cloud environments. The primary objective of this work is to propose a workflow scheduling algorithm that optimizes the makespan, service cost, and load balance in the cloud. The proposed HGWOCPSO hybrid algorithm employs GWO and Constriction factor based PSO (CPSO) for the workflow optimization. The algorithm is simulated on Workflowsim, where a set of scientific workflows with varying task sizes and inter-task communication requirements are executed on a cloud platform. The simulation results show that the proposed algorithm outperforms existing algorithms in terms of makespan, service cost, and load balance. The employed GWO algorithm mitigates the problem of local optima that is inherent in PSO algorithm

    An Effective PSO-inspired Algorithm for Workflow Scheduling

    Get PDF
    The Cloud is a computing platform that provides on-demand access to a shared pool of configurable resources such as networks, servers and storage that can be rapidly provisioned and released with minimal management effort from clients. At its core, Cloud computing focuses on maximizing the effectiveness of the shared resources. Therefore, workflow scheduling is one of the challenges that the Cloud must tackle especially if a large number of tasks are executed on geographically distributed servers. This entails the need to adopt an effective scheduling algorithm in order to minimize task completion time (makespan). Although workflow scheduling has been the focus of many researchers, a handful efficient solutions have been proposed for Cloud computing. In this paper, we propose the LPSO, a novel algorithm for workflow scheduling problem that is based on the Particle Swarm Optimization method. Our proposed algorithm not only ensures a fast convergence but also prevents getting trapped in local extrema. We ran realistic scenarios using CloudSim and found that LPSO is superior to previously proposed algorithms and noticed that the deviation between the solution found by LPSO and the optimal solution is negligible

    Energy-Efficient Load Balancing Algorithm for Workflow Scheduling in Cloud Data Centers Using Queuing and Thresholds

    Get PDF
    Cloud computing is a rapidly growing technology that has been implemented in various fields in recent years, such as business, research, industry, and computing. Cloud computing provides different services over the internet, thus eliminating the need for personalized hardware and other resources. Cloud computing environments face some challenges in terms of resource utilization, energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively studied in the literature. The problem has been studied with different parameters and objectives. In this article, we address the problem of energy consumption and efficient resource utilization in virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in separate queues. In the next step, tasks are classified based on the intensities of the required resources. Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were performed to validate the proposed technique. Comparative results obtained on benchmark datasets are presented. The results show the effectiveness of the proposed algorithm over that of the other algorithms to which it was compared in terms of energy consumption, makespan, and load balancing

    A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing

    Get PDF
    Abstract: For task-scheduling problems in cloud computing, a multi-objective optimization method is proposed here. First, with an aim toward the biodiversity of resources and tasks in cloud computing, we propose a resource cost model that defines the demand of tasks on resources with more details. This model reflects the relationship between the user's resource costs and the budget costs. A multi-objective optimization scheduling method has been proposed based on this resource cost model. This method considers the makespan and the user's budget costs as constraints of the optimization problem, achieving multi-objective optimization of both performance and cost. An improved ant colony algorithm has been proposed to solve this problem. Two constraint functions were used to evaluate and provide feedback regarding the performance and budget cost. These two constraint functions made the algorithm adjust the quality of the solution in a timely manner based on feedback in order to achieve the optimal solution. Some simulation experiments were designed to evaluate this method's performance using four metrics: 1) the makespan; 2) cost; 3) deadline violation rate; and 4) resource utilization. Experimental results show that based on these four metrics, a multi-objective optimization method is better than other similar methods, especially as it increased 56.6% in the best case scenario
    corecore