12,482 research outputs found

    Determining cellular CTCF and cohesin abundances to constrain 3D genome models.

    Get PDF
    Achieving a quantitative and predictive understanding of 3D genome architecture remains a major challenge, as it requires quantitative measurements of the key proteins involved. Here, we report the quantification of CTCF and cohesin, two causal regulators of topologically associating domains (TADs) in mammalian cells. Extending our previous imaging studies (Hansen et al., 2017), we estimate bounds on the density of putatively DNA loop-extruding cohesin complexes and CTCF binding site occupancy. Furthermore, co-immunoprecipitation studies of an endogenously tagged subunit (Rad21) suggest the presence of cohesin dimers and/or oligomers. Finally, based on our cell lines with accurately measured protein abundances, we report a method to conveniently determine the number of molecules of any Halo-tagged protein in the cell. We anticipate that our results and the established tool for measuring cellular protein abundances will advance a more quantitative understanding of 3D genome organization, and facilitate protein quantification, key to comprehend diverse biological processes

    Matched subspace detection with hypothesis dependent noise power

    Get PDF
    We consider the problem of detecting a subspace signal in white Gaussian noise when the noise power may be different under the null hypothesis—where it is assumed to be known—and the alternative hypothesis. This situation occurs when the presence of the signal of interest (SOI) triggers an increase in the noise power. Accordingly, it may be relevant in the case of a mismatch between the actual SOI subspace and its presumed value, resulting in a modelling error. We derive the generalized likelihood ratio test (GLRT) for the problem at hand and contrast it with the GLRT which assumes known and equal noise power under the two hypotheses. A performance analysis is carried out and the distributions of the two test statistics are derived. From this analysis, we discuss the differences between the two detectors and provide explanations for the improved performance of the new detector. Numerical simulations attest to the validity of the analysis

    Modern methods in engine knock signal detection

    Get PDF
    In this paper, a review is given of some of the modern methods in the detection of knock in internal-combustion engines and some comparisons are made between these methods and the effectiveness of each one of them is indicated through a statement of the advantages and disadvantages of each method. In this way it will be possible to clarify how to deal with the original signal and the associated signal noise through some of the modern algorithms in the field of soft computing such as an Artificial Neural Network (ANN), Genetic Algorithms (GA), Wavelet Transform (WT), Fuzzy logic, Supported Vector Machine (SVM) and some statistical methods
    corecore