63,644 research outputs found

    Achievable Angles Between two Compressed Sparse Vectors Under Norm/Distance Constraints Imposed by the Restricted Isometry Property: A Plane Geometry Approach

    Full text link
    The angle between two compressed sparse vectors subject to the norm/distance constraints imposed by the restricted isometry property (RIP) of the sensing matrix plays a crucial role in the studies of many compressive sensing (CS) problems. Assuming that (i) u and v are two sparse vectors separated by an angle thetha, and (ii) the sensing matrix Phi satisfies RIP, this paper is aimed at analytically characterizing the achievable angles between Phi*u and Phi*v. Motivated by geometric interpretations of RIP and with the aid of the well-known law of cosines, we propose a plane geometry based formulation for the study of the considered problem. It is shown that all the RIP-induced norm/distance constraints on Phi*u and Phi*v can be jointly depicted via a simple geometric diagram in the two-dimensional plane. This allows for a joint analysis of all the considered algebraic constraints from a geometric perspective. By conducting plane geometry analyses based on the constructed diagram, closed-form formulae for the maximal and minimal achievable angles are derived. Computer simulations confirm that the proposed solution is tighter than an existing algebraic-based estimate derived using the polarization identity. The obtained results are used to derive a tighter restricted isometry constant of structured sensing matrices of a certain kind, to wit, those in the form of a product of an orthogonal projection matrix and a random sensing matrix. Follow-up applications to three CS problems, namely, compressed-domain interference cancellation, RIP-based analysis of the orthogonal matching pursuit algorithm, and the study of democratic nature of random sensing matrices are investigated.Comment: submitted to IEEE Trans. Information Theor

    Marginal and Relevant Deformations of N=4 Field Theories and Non-Commutative Moduli Spaces of Vacua

    Get PDF
    We study marginal and relevant supersymmetric deformations of the N=4 super-Yang-Mills theory in four dimensions. Our primary innovation is the interpretation of the moduli spaces of vacua of these theories as non-commutative spaces. The construction of these spaces relies on the representation theory of the related quantum algebras, which are obtained from F-term constraints. These field theories are dual to superstring theories propagating on deformations of the AdS_5xS^5 geometry. We study D-branes propagating in these vacua and introduce the appropriate notion of algebraic geometry for non-commutative spaces. The resulting moduli spaces of D-branes have several novel features. In particular, they may be interpreted as symmetric products of non-commutative spaces. We show how mirror symmetry between these deformed geometries and orbifold theories follows from T-duality. Many features of the dual closed string theory may be identified within the non-commutative algebra. In particular, we make progress towards understanding the K-theory necessary for backgrounds where the Neveu-Schwarz antisymmetric tensor of the string is turned on, and we shed light on some aspects of discrete anomalies based on the non-commutative geometry.Comment: 60 pages, 4 figures, JHEP format, amsfonts, amssymb, amsmat

    Exploring the Vacuum Geometry of N=1 Gauge Theories

    Get PDF
    Using techniques of algorithmic algebraic geometry, we present a new and efficient method for explicitly computing the vacuum space of N=1 gauge theories. We emphasize the importance of finding special geometric properties of these spaces in connecting phenomenology to guiding principles descending from high-energy physics. We exemplify the method by addressing various subsectors of the MSSM. In particular the geometry of the vacuum space of electroweak theory is described in detail, with and without right-handed neutrinos. We discuss the impact of our method on the search for evidence of underlying physics at a higher energy. Finally we describe how our results can be used to rule out certain top-down constructions of electroweak physics.Comment: 35 pages, 2 figures, LaTe

    Numerical algebraic geometry for model selection and its application to the life sciences

    Full text link
    Researchers working with mathematical models are often confronted by the related problems of parameter estimation, model validation, and model selection. These are all optimization problems, well-known to be challenging due to non-linearity, non-convexity and multiple local optima. Furthermore, the challenges are compounded when only partial data is available. Here, we consider polynomial models (e.g., mass-action chemical reaction networks at steady state) and describe a framework for their analysis based on optimization using numerical algebraic geometry. Specifically, we use probability-one polynomial homotopy continuation methods to compute all critical points of the objective function, then filter to recover the global optima. Our approach exploits the geometric structures relating models and data, and we demonstrate its utility on examples from cell signaling, synthetic biology, and epidemiology.Comment: References added, additional clarification

    The Classification of Highly Supersymmetric Supergravity Solutions

    Full text link
    The spinorial geometry method is an effective method for constructing systematic classifications of supersymmetric supergravity solutions. Recent work on analysing highly supersymmetric solutions in type IIB supergravity using this method is reviewed [arXiv:hep-th/0606049, arXiv:0710.1829]. It is shown that all supersymmetric solutions of IIB supergravity with more than 28 Killing spinors are locally maximally supersymmetric.Comment: 23 pages, latex. To appear in the proceedings of the Special Metrics and Supersymmetry conference at Universidad del Pais Vasco, May 2008. References correcte

    Algebraic statistical models

    Full text link
    Many statistical models are algebraic in that they are defined in terms of polynomial constraints, or in terms of polynomial or rational parametrizations. The parameter spaces of such models are typically semi-algebraic subsets of the parameter space of a reference model with nice properties, such as for example a regular exponential family. This observation leads to the definition of an `algebraic exponential family'. This new definition provides a unified framework for the study of statistical models with algebraic structure. In this paper we review the ingredients to this definition and illustrate in examples how computational algebraic geometry can be used to solve problems arising in statistical inference in algebraic models
    • 

    corecore