71 research outputs found

    Computational Electromagnetism and Acoustics

    Get PDF
    It is a moot point to stress the significance of accurate and fast numerical methods for the simulation of electromagnetic fields and sound propagation for modern technology. This has triggered a surge of research in mathematical modeling and numerical analysis aimed to devise and improve methods for computational electromagnetism and acoustics. Numerical techniques for solving the initial boundary value problems underlying both computational electromagnetics and acoustics comprise a wide array of different approaches ranging from integral equation methods to finite differences. Their development faces a few typical challenges: highly oscillatory solutions, control of numerical dispersion, infinite computational domains, ill-conditioned discrete operators, lack of strong ellipticity, hysteresis phenomena, to name only a few. Profound mathematical analysis is indispensable for tackling these issues. Many outstanding contributions at this Oberwolfach conference on Computational Electromagnetism and Acoustics strikingly confirmed the immense recent progress made in the field. To name only a few highlights: there have been breakthroughs in the application and understanding of phase modulation and extraction approaches for the discretization of boundary integral equations at high frequencies. Much has been achieved in the development and analysis of discontinuous Galerkin methods. New insight have been gained into the construction and relationships of absorbing boundary conditions also for periodic media. Considerable progress has been made in the design of stable and space-time adaptive discretization techniques for wave propagation. New ideas have emerged for the fast and robust iterative solution for discrete quasi-static electromagnetic boundary value problems

    Solution strategies for nonlinear conservation laws

    Get PDF
    Nonlinear conservation laws form the basis for models for a wide range of physical phenomena. Finding an optimal strategy for solving these problems can be challenging, and a good strategy for one problem may fail spectacularly for others. As different problems have different challenging features, exploiting knowledge about the problem structure is a key factor in achieving an efficient solution strategy. Most strategies found in literature for solving nonlinear problems involve a linearization step, usually using Newton's method, which replaces the original nonlinear problem by an iteration process consisting of a series of linear problems. A large effort is then spent on finding a good strategy for solving these linear problems. This involves choosing suitable preconditioners and linear solvers. This approach is in many cases a good choice and a multitude of different methods have been developed. However, the linearization step to some degree involves a loss of information about the original problem. This is not necessarily critical, but in many cases the structure of the nonlinear problem can be exploited to a larger extent than what is possible when working solely on the linearized problem. This may involve knowledge about dominating physical processes and specifically on whether a process is near equilibrium. By using nonlinear preconditioning techniques developed in recent years, certain attractive features such as automatic localization of computations to parts of the problem domain with the highest degree of nonlinearities arise. In the present work, these methods are further refined to obtain a framework for nonlinear preconditioning that also takes into account equilibrium information. This framework is developed mainly in the context of porous media, but in a general manner, allowing for application to a wide range of problems. A scalability study shows that the method is scalable for challenging two-phase flow problems. It is also demonstrated for nonlinear elasticity problems. Some models arising from nonlinear conservation laws are best solved using completely different strategies than the approach outlined above. One such example can be found in the field of surface gravity waves. For special types of nonlinear waves, such as solitary waves and undular bores, the well-known Korteweg-de Vries (KdV) equation has been shown to be a suitable model. This equation has many interesting properties not typical of nonlinear equations which may be exploited in the solver, and strategies usually reserved to linear problems may be applied. In this work includes a comparative study of two discretization methods with highly different properties for this equation

    On Multilevel Methods Based on Non-Nested Meshes

    Get PDF
    This thesis is concerned with multilevel methods for the efficient solution of partial differential equations in the field of scientific computing. Further, emphasis is put on an extensive study of the information transfer between finite element spaces associated with non-nested meshes. For the discretization of complicated geometries with a finite element method, unstructured meshes are often beneficial as they can easily be adjusted to the shape of the computational domain. Such meshes, and thus the corresponding discrete function spaces, do not allow for straightforward multilevel hierarchies that could be exploited to construct fast solvers. In the present thesis, we present a class of "semi-geometric" multilevel iterations, which are based on hierarchies of independent, non-nested meshes. This is realized by a variational approach such that the images of suitable prolongation operators in the next (finer) space recursively determine the coarse level spaces. The semi-geometric concept is of very general nature compared with other methods relying on geometric considerations. This is reflected in the relatively loose relations of the employed meshes to each other. The specific benefit of the approach based on non-nested meshes is the flexibility in the choice of the coarse meshes, which can, for instance, be generated independently by standard methods. The resolution of the boundaries of the actual computational domain in the constructed coarse level spaces is a characteristic feature of the devised class of methods. The flexible applicability and the efficiency of the presented solution methods is demonstrated in a series of numerical experiments. We also explain the practical implementation of the semi-geometric ideas and concrete transfer concepts between non-nested meshes. Moreover, an extension to a semi-geometric monotone multigrid method for the solution of variational inequalities is discussed. We carry out the analysis of the convergence and preconditioning properties, respectively, in the framework of the theory of subspace correction methods. Our technical considerations yield a quasi-optimal result, which we prove for general, shape regular meshes by local arguments. The relevant properties of the operators for the prolongation between non-nested finite element spaces are the H1-stability and an L2-approximation property as well as the locality of the transfer. This thesis is a contribution to the development of fast solvers for equations on complicated geometries with focus on geometric techniques (as opposed to algebraic ones). Connections to other approaches are carefully elaborated. In addition, we examine the actual information transfer between non-nested finite element spaces. In a novel study, we combine theoretical, practical and experimental considerations. A thourough investigation of the qualitative properties and a quantitative analysis of the differences of individual transfer concepts to each other lead to new results on the information transfer as such. Finally, by the introduction of a generalized projection operator, the pseudo-L2-projection, we obtain a significantly better approximation of the actual L2-orthogonal projection than other approaches from the literature.Nicht-geschachtelte Gitter in Multilevel-Verfahren Diese Arbeit beschĂ€ftigt sich mit Multilevel-Verfahren zur effizienten Lösung von Partiellen Differentialgleichungen im Bereich des Wissenschaftlichen Rechnens. Dabei liegt ein weiterer Schwerpunkt auf der eingehenden Untersuchung des Informationsaustauschs zwischen Finite-Elemente-RĂ€umen zu nicht-geschachtelten Gittern. Zur Diskretisierung von komplizierten Geometrien mit einer Finite-Elemente-Methode sind unstrukturierte Gitter oft von Vorteil, weil sie der Form des Rechengebiets einfacher angepasst werden können. Solche Gitter, und somit die zugehörigen diskreten FunktionenrĂ€ume, besitzen im Allgemeinen keine leicht zugĂ€ngliche Multilevel-Struktur, die sich zur Konstruktion schneller Löser ausnutzen ließe. In der vorliegenden Arbeit stellen wir eine Klasse "semi-geometrischer" Multilevel-Iterationen vor, die auf Hierarchien voneinander unabhĂ€ngiger, nicht-geschachtelter Gitter beruhen. Dabei bestimmen in einem variationellen Ansatz rekursiv die Bilder geeigneter Prolongationsoperatoren im jeweils folgenden (feineren) Raum die GrobgitterrĂ€ume. Das semi-geometrische Konzept ist sehr allgemeiner Natur verglichen mit anderen Verfahren, die auf geometrischen Überlegungen beruhen. Dies zeigt sich in der verhĂ€ltnismĂ€ĂŸig losen Beziehung der verwendeten Gitter zueinander. Der konkrete Nutzen des Ansatzes mit nicht-geschachtelten Gittern ist die FlexibilitĂ€t der Wahl der Grobgitter. Diese können beispielsweise unabhĂ€ngig mit Standardverfahren generiert werden. Die Auflösung des Randes des tatsĂ€chlichen Rechengebiets in den konstruierten GrobgitterrĂ€umen ist eine Eigenschaft der entwickelten Verfahrensklasse. Die flexible Einsetzbarkeit und die Effizienz der vorgestellten Lösungsverfahren zeigt sich in einer Reihe von numerischen Experimenten. Dazu geben wir Hinweise zur praktischen Umsetzung der semi-geometrischen Ideen und konkreter Transfer-Konzepte zwischen nicht-geschachtelten Gittern. DarĂŒber hinaus wird eine Erweiterung zu einem semi-geometrischen monotonen Mehrgitterverfahren zur Lösung von Variationsungleichungen untersucht. Wir fĂŒhren die Analysis der Konvergenz- bzw. Vorkonditionierungseigenschaften im Rahmen der Theorie der Teilraumkorrekturmethoden durch. Unsere technische Ausarbeitung liefert ein quasi-optimales Resultat, das wir mithilfe lokaler Argumente fĂŒr allgemeine, shape-regulĂ€re Gitterfamilien beweisen. Als relevante Eigenschaften der Operatoren zur Prolongation zwischen nicht-geschachtelten Finite-Elemente-RĂ€umen erweisen sich die H1-StabilitĂ€t und eine L2-Approximationseigenschaft sowie die LokalitĂ€t des Transfers. Diese Arbeit ist ein Beitrag zur Entwicklung schneller Löser fĂŒr Gleichungen auf komplizierten Gebieten mit Schwerpunkt auf geometrischen Techniken (im Unterschied zu algebraischen). Verbindungen zu anderen AnsĂ€tzen werden sorgfĂ€ltig aufgezeigt. Daneben untersuchen wir den Informationsaustausch zwischen nicht-geschachtelten Finite-Elemente-RĂ€umen als solchen. In einer neuartigen Studie verbinden wir theoretische, praktische und experimentelle Überlegungen. Eine sorgfĂ€ltige PrĂŒfung der qualitativen Eigenschaften sowie eine quantitative Analyse der Unterschiede verschiedener Transfer-Konzepte zueinander fĂŒhren zu neuen Ergebnissen bezĂŒglich des Informationsaustauschs selbst. Schließlich erreichen wir durch die EinfĂŒhrung eines verallgemeinerten Projektionsoperators, der Pseudo-L2-Projektion, eine deutlich bessere Approximation der eigentlichen L2-orthogonalen Projektion als andere AnsĂ€tze aus der Literatur

    [Research activities in applied mathematics, fluid mechanics, and computer science]

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995

    Implicit schemes and parallel computing in unstructured grid CFD

    Get PDF
    The development of implicit schemes for obtaining steady state solutions to the Euler and Navier-Stokes equations on unstructured grids is outlined. Applications are presented that compare the convergence characteristics of various implicit methods. Next, the development of explicit and implicit schemes to compute unsteady flows on unstructured grids is discussed. Next, the issues involved in parallelizing finite volume schemes on unstructured meshes in an MIMD (multiple instruction/multiple data stream) fashion are outlined. Techniques for partitioning unstructured grids among processors and for extracting parallelism in explicit and implicit solvers are discussed. Finally, some dynamic load balancing ideas, which are useful in adaptive transient computations, are presented

    On the parallel scalability of hybrid linear solvers for large 3D problems

    Get PDF
    Large-scale scientific applications and industrial simulations are nowadays fully integrated in many engineering areas. They involve the solution of large sparse linear systems. The use of large high performance computers is mandatory to solve these problems. The main topic of this research work was the study of a numerical technique that had attractive features for an efficient solution of large scale linear systems on large massively parallel platforms. The goal is to develop a high performance hybrid direct/iterative approach for solving large 3D problems. We focus specifically on the associated domain decomposition techniques for the parallel solution of large linear systems. We have investigated several algebraic preconditioning techniques, discussed their numerical behaviours, their parallel implementations and scalabilities. We have compared their performances on a set of 3D grand challenge problems
    • 

    corecore