496 research outputs found

    A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure

    Full text link
    In this paper we formulate and test numerically a fully-coupled discontinuous Galerkin (DG) method for incompressible two-phase flow with discontinuous capillary pressure. The spatial discretization uses the symmetric interior penalty DG formulation with weighted averages and is based on a wetting-phase potential / capillary potential formulation of the two-phase flow system. After discretizing in time with diagonally implicit Runge-Kutta schemes the resulting systems of nonlinear algebraic equations are solved with Newton's method and the arising systems of linear equations are solved efficiently and in parallel with an algebraic multigrid method. The new scheme is investigated for various test problems from the literature and is also compared to a cell-centered finite volume scheme in terms of accuracy and time to solution. We find that the method is accurate, robust and efficient. In particular no post-processing of the DG velocity field is necessary in contrast to results reported by several authors for decoupled schemes. Moreover, the solver scales well in parallel and three-dimensional problems with up to nearly 100 million degrees of freedom per time step have been computed on 1000 processors

    Efficient operator-coarsening multigrid schemes for local discontinuous Galerkin methods

    Full text link
    An efficient hphp-multigrid scheme is presented for local discontinuous Galerkin (LDG) discretizations of elliptic problems, formulated around the idea of separately coarsening the underlying discrete gradient and divergence operators. We show that traditional multigrid coarsening of the primal formulation leads to poor and suboptimal multigrid performance, whereas coarsening of the flux formulation leads to optimal convergence and is equivalent to a purely geometric multigrid method. The resulting operator-coarsening schemes do not require the entire mesh hierarchy to be explicitly built, thereby obviating the need to compute quadrature rules, lifting operators, and other mesh-related quantities on coarse meshes. We show that good multigrid convergence rates are achieved in a variety of numerical tests on 2D and 3D uniform and adaptive Cartesian grids, as well as for curved domains using implicitly defined meshes and for multi-phase elliptic interface problems with complex geometry. Extension to non-LDG discretizations is briefly discussed

    Hybrid multigrid methods for high-order discontinuous Galerkin discretizations

    Full text link
    The present work develops hybrid multigrid methods for high-order discontinuous Galerkin discretizations of elliptic problems. Fast matrix-free operator evaluation on tensor product elements is used to devise a computationally efficient PDE solver. The multigrid hierarchy exploits all possibilities of geometric, polynomial, and algebraic coarsening, targeting engineering applications on complex geometries. Additionally, a transfer from discontinuous to continuous function spaces is performed within the multigrid hierarchy. This does not only further reduce the problem size of the coarse-grid problem, but also leads to a discretization most suitable for state-of-the-art algebraic multigrid methods applied as coarse-grid solver. The relevant design choices regarding the selection of optimal multigrid coarsening strategies among the various possibilities are discussed with the metric of computational costs as the driving force for algorithmic selections. We find that a transfer to a continuous function space at highest polynomial degree (or on the finest mesh), followed by polynomial and geometric coarsening, shows the best overall performance. The success of this particular multigrid strategy is due to a significant reduction in iteration counts as compared to a transfer from discontinuous to continuous function spaces at lowest polynomial degree (or on the coarsest mesh). The coarsening strategy with transfer to a continuous function space on the finest level leads to a multigrid algorithm that is robust with respect to the penalty parameter of the SIPG method. Detailed numerical investigations are conducted for a series of examples ranging from academic test cases to more complex, practically relevant geometries. Performance comparisons to state-of-the-art methods from the literature demonstrate the versatility and computational efficiency of the proposed multigrid algorithms

    A Two-Level Method for Mimetic Finite Difference Discretizations of Elliptic Problems

    Get PDF
    We propose and analyze a two-level method for mimetic finite difference approximations of second order elliptic boundary value problems. We prove that the two-level algorithm is uniformly convergent, i.e., the number of iterations needed to achieve convergence is uniformly bounded independently of the characteristic size of the underling partition. We also show that the resulting scheme provides a uniform preconditioner with respect to the number of degrees of freedom. Numerical results that validate the theory are also presented
    • …
    corecore