639 research outputs found

    Lower bounds on the number of realizations of rigid graphs

    Get PDF
    Computing the number of realizations of a minimally rigid graph is a notoriously difficult problem. Towards this goal, for graphs that are minimally rigid in the plane, we take advantage of a recently published algorithm, which is the fastest available method, although its complexity is still exponential. Combining computational results with the theory of constructing new rigid graphs by gluing, we give a new lower bound on the maximal possible number of (complex) realizations for graphs with a given number of vertices. We extend these ideas to rigid graphs in three dimensions and we derive similar lower bounds, by exploiting data from extensive Gr\"obner basis computations

    On the maximal number of real embeddings of minimally rigid graphs in R2\mathbb{R}^2, R3\mathbb{R}^3 and S2S^2

    Get PDF
    Rigidity theory studies the properties of graphs that can have rigid embeddings in a euclidean space Rd\mathbb{R}^d or on a sphere and which in addition satisfy certain edge length constraints. One of the major open problems in this field is to determine lower and upper bounds on the number of realizations with respect to a given number of vertices. This problem is closely related to the classification of rigid graphs according to their maximal number of real embeddings. In this paper, we are interested in finding edge lengths that can maximize the number of real embeddings of minimally rigid graphs in the plane, space, and on the sphere. We use algebraic formulations to provide upper bounds. To find values of the parameters that lead to graphs with a large number of real realizations, possibly attaining the (algebraic) upper bounds, we use some standard heuristics and we also develop a new method inspired by coupler curves. We apply this new method to obtain embeddings in R3\mathbb{R}^3. One of its main novelties is that it allows us to sample efficiently from a larger number of parameters by selecting only a subset of them at each iteration. Our results include a full classification of the 7-vertex graphs according to their maximal numbers of real embeddings in the cases of the embeddings in R2\mathbb{R}^2 and R3\mathbb{R}^3, while in the case of S2S^2 we achieve this classification for all 6-vertex graphs. Additionally, by increasing the number of embeddings of selected graphs, we improve the previously known asymptotic lower bound on the maximum number of realizations. The methods and the results concerning the spatial embeddings are part of the proceedings of ISSAC 2018 (Bartzos et al, 2018)

    Mixed Volume Techniques for Embeddings of Laman Graphs

    Get PDF
    Determining the number of embeddings of Laman graph frameworks is an open problem which corresponds to understanding the solutions of the resulting systems of equations. In this paper we investigate the bounds which can be obtained from the viewpoint of Bernstein's Theorem. The focus of the paper is to provide the methods to study the mixed volume of suitable systems of polynomial equations obtained from the edge length constraints. While in most cases the resulting bounds are weaker than the best known bounds on the number of embeddings, for some classes of graphs the bounds are tight.Comment: Thorough revision of the first version. (13 pages, 4 figures

    Mixed Volume and Distance Geometry Techniques for Counting Euclidean Embeddings of Rigid Graphs

    Get PDF
    A graph G is called generically minimally rigid in Rd if, for any choice of sufficiently generic edge lengths, it can be embedded in Rd in a finite number of distinct ways, modulo rigid transformations. Here, we deal with the problem of determining tight bounds on the number of such embeddings, as a function of the number of vertices. The study of rigid graphs is motivated by numerous applications, mostly in robotics, bioinformatics, sensor networks and architecture. We capture embeddability by polynomial systems with suitable structure, so that their mixed volume, which bounds the number of common roots, yields interesting upper bounds on the number of embeddings. We explore different polynomial formulations so as to reduce the corresponding mixed volume, namely by introducing new variables that remove certain spurious roots, and by applying the theory of distance geometry. We focus on R2 and R3, where Laman graphs and 1-skeleta (or edge graphs) of convex simplicial polyhedra, respectively, admit inductive Henneberg constructions. Our implementation yields upper bounds for n ≤ 10 in R2 and R3, which reduce the existing gaps and lead to tight bounds for n ≤ 7 in both R2 and R3; in particular, we describe the recent settlement of the case of Laman graphs with 7 vertices. Our approach also yields a new upper bound for Laman graphs with 8 vertices, which is conjectured to be tight. We also establish the first lower bound in R3 of about 2.52n, where n denotes the number of vertices

    Geometry of discrete and continuous bounded surfaces

    Get PDF
    We work on reconstructing discrete and continuous surfaces with boundaries using length constraints. First, for a bounded discrete surface, we discuss the rigidity and number of embeddings in three-dimensional space, modulo rigid transformations, for given real edge lengths. Our work mainly considers the maximal number of embeddings of rigid graphs in three-dimensional space for specific geometries (annulus, strip). We modify a commonly used semi-algebraic, geometrical formulation using Bézout\u27s theorem, from Euclidean distances corresponding to edge lengths. We suggest a simple way to construct a rigid graph having a finite upper bound. We also implement a generalization of counting embeddings for graphs by segmenting multiple rigid graphs in d-dimensional space. Our computational methodology uses vector and matrix operations and can work best with a relatively small number of points

    The number of realisations of a rigid graph in Euclidean and spherical geometries

    Get PDF
    A graph is dd-rigid if for any generic realisation of the graph in Rd\mathbb{R}^d (equivalently, the dd-dimensional sphere Sd\mathbb{S}^d), there are only finitely many non-congruent realisations in the same space with the same edge lengths. By extending this definition to complex realisations in a natural way, we define cd(G)c_d(G) to be the number of equivalent dd-dimensional complex realisations of a dd-rigid graph GG for a given generic realisation, and cd(G)c^*_d(G) to be the number of equivalent dd-dimensional complex spherical realisations of GG for a given generic spherical realisation. Somewhat surprisingly, these two realisation numbers are not always equal. Recently developed algorithms for computing realisation numbers determined that the inequality c2(G)c2(G)c_2(G) \leq c_2^*(G) holds for any minimally 2-rigid graph GG with 12 vertices or less. In this paper we confirm that, for any dimension dd, the inequality cd(G)cd(G)c_d(G) \leq c_d^*(G) holds for every dd-rigid graph GG. This result is obtained via new techniques involving coning, the graph operation that adds an extra vertex adjacent to all original vertices of the graph
    corecore