9,995 research outputs found

    Evaluating the performance of model transformation styles in Maude

    Get PDF
    Rule-based programming has been shown to be very successful in many application areas. Two prominent examples are the specification of model transformations in model driven development approaches and the definition of structured operational semantics of formal languages. General rewriting frameworks such as Maude are flexible enough to allow the programmer to adopt and mix various rule styles. The choice between styles can be biased by the programmer’s background. For instance, experts in visual formalisms might prefer graph-rewriting styles, while experts in semantics might prefer structurally inductive rules. This paper evaluates the performance of different rule styles on a significant benchmark taken from the literature on model transformation. Depending on the actual transformation being carried out, our results show that different rule styles can offer drastically different performances. We point out the situations from which each rule style benefits to offer a valuable set of hints for choosing one style over the other

    Architectural design rewriting as an architecture description language

    Get PDF
    Architectural Design Rewriting (ADR) is a declarative rule-based approach for the design of dynamic software architectures. The key features that make ADR a suitable and expressive framework are the algebraic presentation of graph-based structures and the use of conditional rewrite rules. These features enable the modelling of, e.g. hierarchical design, inductively defined reconfigurations and ordinary computation. Here, we promote ADR as an Architectural Description Language

    On straight words and minimal permutators in finite transformation semigroups.

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright SpringerMotivated by issues arising in computer science, we investigate the loop-free paths from the identity transformation and corresponding straight words in the Cayley graph of a finite transformation semigroup with a fixed generator set. Of special interest are words that permute a given subset of the state set. Certain such words, called minimal permutators, are shown to comprise a code, and the straight ones comprise a finite code. Thus, words that permute a given subset are uniquely factorizable as products of the subset's minimal permutators, and these can be further reduced to straight minimal permutators. This leads to insight into structure of local pools of reversibility in transformation semigroups in terms of the set of words permuting a given subset. These findings can be exploited in practical calculations for hierarchical decompositions of finite automata. As an example we consider groups arising in biological systems

    Degenerating families of dendrograms

    Full text link
    Dendrograms used in data analysis are ultrametric spaces, hence objects of nonarchimedean geometry. It is known that there exist pp-adic representation of dendrograms. Completed by a point at infinity, they can be viewed as subtrees of the Bruhat-Tits tree associated to the pp-adic projective line. The implications are that certain moduli spaces known in algebraic geometry are pp-adic parameter spaces of (families of) dendrograms, and stochastic classification can also be handled within this framework. At the end, we calculate the topology of the hidden part of a dendrogram.Comment: 13 pages, 8 figure

    The Algebraic View of Computation

    Full text link
    We argue that computation is an abstract algebraic concept, and a computer is a result of a morphism (a structure preserving map) from a finite universal semigroup.Comment: 13 pages, final version will be published elsewher
    corecore