242 research outputs found

    Simplified decoding techniques for linear block codes

    Get PDF
    Error correcting codes are combinatorial objects, designed to enable reliable transmission of digital data over noisy channels. They are ubiquitously used in communication, data storage etc. Error correction allows reconstruction of the original data from received word. The classical decoding algorithms are constrained to output just one codeword. However, in the late 50’s researchers proposed a relaxed error correction model for potentially large error rates known as list decoding. The research presented in this thesis focuses on reducing the computational effort and enhancing the efficiency of decoding algorithms for several codes from algorithmic as well as architectural standpoint. The codes in consideration are linear block codes closely related to Reed Solomon (RS) codes. A high speed low complexity algorithm and architecture are presented for encoding and decoding RS codes based on evaluation. The implementation results show that the hardware resources and the total execution time are significantly reduced as compared to the classical decoder. The evaluation based encoding and decoding schemes are modified and extended for shortened RS codes and software implementation shows substantial reduction in memory footprint at the expense of latency. Hermitian codes can be seen as concatenated RS codes and are much longer than RS codes over the same aphabet. A fast, novel and efficient VLSI architecture for Hermitian codes is proposed based on interpolation decoding. The proposed architecture is proven to have better than Kötter’s decoder for high rate codes. The thesis work also explores a method of constructing optimal codes by computing the subfield subcodes of Generalized Toric (GT) codes that is a natural extension of RS codes over several dimensions. The polynomial generators or evaluation polynomials for subfield-subcodes of GT codes are identified based on which dimension and bound for the minimum distance are computed. The algebraic structure for the polynomials evaluating to subfield is used to simplify the list decoding algorithm for BCH codes. Finally, an efficient and novel approach is proposed for exploiting powerful codes having complex decoding but simple encoding scheme (comparable to RS codes) for multihop wireless sensor network (WSN) applications

    Error-Correction Coding and Decoding: Bounds, Codes, Decoders, Analysis and Applications

    Get PDF
    Coding; Communications; Engineering; Networks; Information Theory; Algorithm

    Fault attacks and countermeasures for elliptic curve cryptosystems

    Get PDF
    In this thesis we have developed a new algorithmic countermeasures that protect elliptic curve computation by protecting computation of the finite binary extension field, against fault attacks. Firstly, we have proposed schemes, i.e., a Chinese Remainder Theorem based fault tolerant computation in finite field for use in ECCs, as well as Lagrange Interpolation based fault tolerant computation. Our approach is based on the error correcting codes, i.e., redundant residue polynomial codes and the use of first original approach of Reed-Solomon codes. Computation of the field elements is decomposed into parallel, mutually independent, modular/identical channels, so that in case of faults at one channel, errors will not distribute to other channels. Based on these schemes we have developed new algorithms, namely fault tolerant residue representation modular multiplication algorithm and fault tolerant Lagrange representation modular multiplication algorithm, which are immune against error propagation under the fault models that we propose: Random Fault Model, Arbitrary Fault Model, and Single Bit Fault Model. These algorithms provide fault tolerant computation in GF (2k) for use in ECCs. Our new developed algorithms where inputs, i.e., field elements, are represented by the redundant residue representation/ redundant lagrange representation enables us to overcome the problem if during computation one, or both coordinates x, y GF (2k) of the point P E/GF (2k) /Fk are corrupted. We assume that during each run of an attacked algorithm, in one single attack, an adversary can apply any of the proposed fault models, i.e., either Random Fault Model, or Arbitrary Fault Model, or Single Bit Fault Model. In this way more channels can be targeted, i.e., different fault models can be used on different channels. Also, our proposed algorithms can have masked errors and will not be immune against attacks which can create those kind of errors, but it is a difficult problem to counter masked errors, since any anti-fault attack scheme will have some masked errors. Moreover, we have derived conditions that inflicted error needs to have in order to yield undetectable faulty point on non-supersingular elliptic curve over GF(2k). Our algorithmic countermeasures can be applied to any public key cryptosystem that performs computation over the finite field GF (2k)

    Part I:

    Get PDF
    • …
    corecore