27,765 research outputs found

    The algebraic combinatorics of snakes

    Get PDF
    Snakes are analogues of alternating permutations defined for any Coxeter group. We study these objects from the point of view of combinatorial Hopf algebras, such as noncommutative symmetric functions and their generalizations. The main purpose is to show that several properties of the generating functions of snakes, such as differential equations or closed form as trigonometric functions, can be lifted at the level of noncommutative symmetric functions or free quasi-symmetric functions. The results take the form of algebraic identities for type B noncommutative symmetric functions, noncommutative supersymmetric functions and colored free quasi-symmetric functions.Comment: 29 pages, Late

    Coding Theory and Algebraic Combinatorics

    Full text link
    This chapter introduces and elaborates on the fruitful interplay of coding theory and algebraic combinatorics, with most of the focus on the interaction of codes with combinatorial designs, finite geometries, simple groups, sphere packings, kissing numbers, lattices, and association schemes. In particular, special interest is devoted to the relationship between codes and combinatorial designs. We describe and recapitulate important results in the development of the state of the art. In addition, we give illustrative examples and constructions, and highlight recent advances. Finally, we provide a collection of significant open problems and challenges concerning future research.Comment: 33 pages; handbook chapter, to appear in: "Selected Topics in Information and Coding Theory", ed. by I. Woungang et al., World Scientific, Singapore, 201

    Asymmetric function theory

    Full text link
    The classical theory of symmetric functions has a central position in algebraic combinatorics, bridging aspects of representation theory, combinatorics, and enumerative geometry. More recently, this theory has been fruitfully extended to the larger ring of quasisymmetric functions, with corresponding applications. Here, we survey recent work extending this theory further to general asymmetric polynomials.Comment: 36 pages, 8 figures, 1 table. Written for the proceedings of the Schubert calculus conference in Guangzhou, Nov. 201
    corecore