4,968 research outputs found

    Monadic Second-Order Logic with Arbitrary Monadic Predicates

    Full text link
    We study Monadic Second-Order Logic (MSO) over finite words, extended with (non-uniform arbitrary) monadic predicates. We show that it defines a class of languages that has algebraic, automata-theoretic and machine-independent characterizations. We consider the regularity question: given a language in this class, when is it regular? To answer this, we show a substitution property and the existence of a syntactical predicate. We give three applications. The first two are to give very simple proofs that the Straubing Conjecture holds for all fragments of MSO with monadic predicates, and that the Crane Beach Conjecture holds for MSO with monadic predicates. The third is to show that it is decidable whether a language defined by an MSO formula with morphic predicates is regular.Comment: Conference version: MFCS'14, Mathematical Foundations of Computer Science Journal version: ToCL'17, Transactions on Computational Logi

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    H∞ control of nonlinear systems: a convex characterization

    Get PDF
    The nonlinear H∞-control problem is considered with an emphasis on developing machinery with promising computational properties. The solutions to H∞-control problems for a class of nonlinear systems are characterized in terms of nonlinear matrix inequalities which result in convex problems. The computational implications for the characterization are discussed

    Graphical modeling of stochastic processes driven by correlated errors

    Full text link
    We study a class of graphs that represent local independence structures in stochastic processes allowing for correlated error processes. Several graphs may encode the same local independencies and we characterize such equivalence classes of graphs. In the worst case, the number of conditions in our characterizations grows superpolynomially as a function of the size of the node set in the graph. We show that deciding Markov equivalence is coNP-complete which suggests that our characterizations cannot be improved upon substantially. We prove a global Markov property in the case of a multivariate Ornstein-Uhlenbeck process which is driven by correlated Brownian motions.Comment: 43 page

    Elliptic characterization and localization of Oka manifolds

    Full text link
    We prove that Gromov's ellipticity condition Ell1\mathrm{Ell}_1 characterizes Oka manifolds. This characterization gives another proof of the fact that subellipticity implies the Oka property, and affirmative answers to Gromov's conjectures. As another application, we establish the localization principle for Oka manifolds, which gives new examples of Oka manifolds. In the appendix, it is also shown that the Oka property is not a bimeromorphic invariant.Comment: 15 page
    corecore