11 research outputs found

    Looking at the NIST Lightweight Candidates from a Masking Point-of-View

    Get PDF
    Cryptographic primitives have been designed to be secure against mathematical attacks in a black-box model. Such primitives can be implemented in a way that they are also secure against physical attacks, in a grey-box model. One of the most popular techniques for this purpose is masking. The increased security always comes with a high price tag in terms of implementation cost. In this work, we look at how the traditional design principles of symmetric primitives can be at odds with the optimization of the implementations and how they can evolve to be more suitable for embedded systems. In particular, we take a comparative look at the round 2 candidates of the NIST lightweight competition and their implementation properties in the world of masking

    Partial Sums Meet FFT: Improved Attack on 6-Round AES

    Get PDF
    The partial sums cryptanalytic technique was introduced in 2000 by Ferguson et al., who used it to break 6-round AES with time complexity of 2522^{52} S-box computations -- a record that has not been beaten ever since. In 2014, Todo and Aoki showed that for 6-round AES, partial sums can be replaced by a technique based on the Fast Fourier Transform (FFT), leading to an attack with a comparable complexity. In this paper we show that the partial sums technique can be combined with an FFT-based technique, to get the best of the two worlds. Using our combined technique, we obtain an attack on 6-round AES with complexity of about 246.42^{46.4} additions. We fully implemented the attack experimentally, along with the partial sums attack and the Todo-Aoki attack, and confirmed that our attack improves the best known attack on 6-round AES by a factor of more than 32. We expect that our technique can be used to significantly enhance numerous attacks that exploit the partial sums technique. To demonstrate this, we use our technique to improve the best known attack on 7-round Kuznyechik by a factor of more than 80, and to reduce the complexity of the best known attack on the full MISTY1 from 269.52^{69.5} to 2672^{67}

    Boolean Polynomial Evaluation for the Masses

    Get PDF
    This article gives improved algorithms to evaluate a multivariate Boolean polynomial over all the possible values of its input variables. Such a procedure is often used in cryptographic attacks against symmetric schemes. More precisely, we provide improved and simplified versions of the Fast Exhaustive Search algorithm presented at CHES\u2710 and of the space-efficient Moebius transform given by Dinur at EUROCRYPT\u2721. The new algorithms require O(d2n)\mathcal{O}(d 2^n) operations with a degree-dd polynomial and operate in-place. We provide the full C code of a complete implementation under the form of a ``user-friendly\u27\u27 library called BeanPolE, which we hope could be helpful to other cryptographers. This paper actually contains all the code, which is quite short

    Security of lightweight cryptographic algorithms

    Get PDF
    Η διπλωματική εργασία μελετά τους lightweight κρυπτογραφικούς αλγορίθμους, εστιάζοντας σε συγκεκριμένα χαρακτηριστικά ασφάλειας. Πιο συγκεκριμένα, θα αναλυθούν, θα αξιολογηθούν και θα ταξινομηθούν σε διάφορες κατηγορίες, όπως αν είναι block ή stream ciphers και αν είναι authenticated ή όχι, κάποιοι lightweight αλγόριθμοι. Αυτή η ταξινόμηση αφορά αλγόριθμους που βρίσκονται σε διαδικασία προτυποποίησης και συμμετέχουν στο διαγωνισμό του NIST (National Institution of Standards and Technology), Lightweight Crypto. Στη συνέχεια, θα δοθεί έμφαση στις Boolean Functions που χρησιμοποιούν αυτοί οι lightweight κρυπτογραφικοί αλγόριθμοι, με σκοπό να υπολογιστούν οι κρυπτογραφικές ιδιότητες των συναρτήσεων αυτών και να αξιολογηθεί η ανθεκτικότητα αυτών των αλγορίθμων ενάντια σε κρυπταναλυτικές επιθέσεις. Η ανάλυσή μας δείχνει πως δεν υπάρχει καμία Boolean function που να ικανοποιεί όλες τις κρυπτογραφικές ιδιότητες και έτσι απαιτείται περαιτέρω έρευνα για να διευκρινιστεί αν οι ευπάθειες αυτές των Boolean functions μπορούν να χρησιμοποιηθούν για την διεξαγωγή κρυπταναλυτικής επίθεσης.This thesis studies the lightweight cryptographic algorithms, focusing on specific security features. In particular, many lightweight algorithms are being analyzed, evaluated and classified into several categories including but not limited to block/stream ciphers, either being authenticated or not. This categorization consists of algorithms that are in the progress of standardization, competing in the NIST (National Institution of Standards and Technology) Lightweight Crypto Standardization process. Next, emphasis will be given on the Boolean functions that these Lightweight cryptographic algorithms utilize, with the aim to calculate the cryptographic properties of such functions towards evaluating the resistance of these algorithms against several cryptanalytic attacks. Our analysis illustrates that there is no cryptographic Boolean function satisfying all the cryptographic properties and, thus, further research is needed in order to evaluate whether such vulnerabilities of underlying Boolean functions can actually be exploited in order to mount a cryptanalytic attac

    Analyse et Conception d'Algorithmes de Chiffrement Légers

    Get PDF
    The work presented in this thesis has been completed as part of the FUI Paclido project, whose aim is to provide new security protocols and algorithms for the Internet of Things, and more specifically wireless sensor networks. As a result, this thesis investigates so-called lightweight authenticated encryption algorithms, which are designed to fit into the limited resources of constrained environments. The first main contribution focuses on the design of a lightweight cipher called Lilliput-AE, which is based on the extended generalized Feistel network (EGFN) structure and was submitted to the Lightweight Cryptography (LWC) standardization project initiated by NIST (National Institute of Standards and Technology). Another part of the work concerns theoretical attacks against existing solutions, including some candidates of the nist lwc standardization process. Therefore, some specific analyses of the Skinny and Spook algorithms are presented, along with a more general study of boomerang attacks against ciphers following a Feistel construction.Les travaux présentés dans cette thèse s’inscrivent dans le cadre du projet FUI Paclido, qui a pour but de définir de nouveaux protocoles et algorithmes de sécurité pour l’Internet des Objets, et plus particulièrement les réseaux de capteurs sans fil. Cette thèse s’intéresse donc aux algorithmes de chiffrements authentifiés dits à bas coût ou également, légers, pouvant être implémentés sur des systèmes très limités en ressources. Une première partie des contributions porte sur la conception de l’algorithme léger Lilliput-AE, basé sur un schéma de Feistel généralisé étendu (EGFN) et soumis au projet de standardisation international Lightweight Cryptography (LWC) organisé par le NIST (National Institute of Standards and Technology). Une autre partie des travaux se concentre sur des attaques théoriques menées contre des solutions déjà existantes, notamment un certain nombre de candidats à la compétition LWC du NIST. Elle présente donc des analyses spécifiques des algorithmes Skinny et Spook ainsi qu’une étude plus générale des attaques de type boomerang contre les schémas de Feistel

    Algorithmes quantiques pour la cryptanalyse et cryptographie symétrique post-quantique

    Get PDF
    Modern cryptography relies on the notion of computational security. The level of security given by a cryptosystem is expressed as an amount of computational resources required to break it. The goal of cryptanalysis is to find attacks, that is, algorithms with lower complexities than the conjectural bounds.With the advent of quantum computing devices, these levels of security have to be updated to take a whole new notion of algorithms into account. At the same time, cryptography is becoming widely used in small devices (smart cards, sensors), with new cost constraints.In this thesis, we study the security of secret-key cryptosystems against quantum adversaries.We first build new quantum algorithms for k-list (k-XOR or k-SUM) problems, by composing exhaustive search procedures. Next, we present dedicated cryptanalysis results, starting with a new quantum cryptanalysis tool, the offline Simon's algorithm. We describe new attacks against the lightweight algorithms Spook and Gimli and we perform the first quantum security analysis of the standard cipher AES.Finally, we specify Saturnin, a family of lightweight cryptosystems oriented towards post-quantum security. Thanks to a very similar structure, its security relies largely on the analysis of AES.La cryptographie moderne est fondée sur la notion de sécurité computationnelle. Les niveaux de sécurité attendus des cryptosystèmes sont exprimés en nombre d'opérations ; une attaque est un algorithme d'une complexité inférieure à la borne attendue. Mais ces niveaux de sécurité doivent aujourd'hui prendre en compte une nouvelle notion d'algorithme : le paradigme du calcul quantique. Dans le même temps,la délégation grandissante du chiffrement à des puces RFID, objets connectés ou matériels embarqués pose de nouvelles contraintes de coût.Dans cette thèse, nous étudions la sécurité des cryptosystèmes à clé secrète face à un adversaire quantique.Nous introduisons tout d'abord de nouveaux algorithmes quantiques pour les problèmes génériques de k-listes (k-XOR ou k-SUM), construits en composant des procédures de recherche exhaustive.Nous présentons ensuite des résultats de cryptanalyse dédiée, en commençant par un nouvel outil de cryptanalyse quantique, l'algorithme de Simon hors-ligne. Nous décrivons de nouvelles attaques contre les algorithmes Spook et Gimli et nous effectuons la première étude de sécurité quantique du chiffrement AES. Dans un troisième temps, nous spécifions Saturnin, une famille de cryptosystèmes à bas coût orientés vers la sécurité post-quantique. La structure de Saturnin est proche de celle de l'AES et sa sécurité en tire largement parti

    Performance-efficient cryptographic primitives in constrained devices

    Get PDF
    PhD ThesisResource-constrained devices are small, low-cost, usually fixed function and very limitedresource devices. They are constrained in terms of memory, computational capabilities, communication bandwidth and power. In the last decade, we have seen widespread use of these devices in health care, smart homes and cities, sensor networks, wearables, automotive systems, and other fields. Consequently, there has been an increase in the research activities in the security of these devices, especially in how to design and implement cryptography that meets the devices’ extreme resource constraints. Cryptographic primitives are low-level cryptographic algorithms used to construct security protocols that provide security, authenticity, and integrity of the messages. The building blocks of the primitives, which are built heavily on mathematical theories, are computationally complex and demands considerable computing resources. As a result, most of these primitives are either too large to fit on resource-constrained devices or highly inefficient when implemented on them. There have been many attempts to address this problem in the literature where cryptography engineers modify conventional primitives into lightweight versions or build new lightweight primitives from scratch. Unfortunately, both solutions suffer from either reduced security, low performance, or high implementation cost. This thesis investigates the performance of the conventional cryptographic primitives and explores the effect of their different building blocks and design choices on their performance. It also studies the impact of the various implementations approaches and optimisation techniques on their performance. Moreover, it investigates the limitations imposed by the tight processing and storage capabilities in constrained devices in implementing cryptography. Furthermore, it evaluates the performance of many newly designed lightweight cryptographic primitives and investigates the resources required to run them with acceptable performance. The thesis aims to provide an insight into the performance of the cryptographic primitives and the resource needed to run them with acceptable performance. This will help in providing solutions that balance performance, security, and resource requirements for these devices.The Institute of Public Administration in Riyadh, and the Saudi Arabian Cultural Bureau in Londo

    Algebraic and higher-order differential cryptanalysis of pyjamask-96

    No full text
    International audienceCryptographic competitions, like the ongoing NIST call for lightweight cryptography, always provide a thriving research environment, where new interesting ideas are proposed and new cryptographic insights are made. One proposal for this NIST call that is accepted for the second round is Pyjamask. Pyjamask is an authenticated encryption scheme that builds upon two block ciphers, Pyjamask-96 and Pyjamask-128, that aim to minimize the number of AND operations at the cost of a very strong linear layer. A side-effect of this goal is a slow growth in the algebraic degree. In this paper, we focus on the block cipher Pyjamask-96 and are able to provide a theoretical key-recovery attack reaching 14 (out of 14) rounds as well as a practical attack on 8 rounds. We do this by combining higher-order differentials with an in-depth analysis of the system of equations gotten for 2.5 rounds of Pyjamask-96. The AEAD-scheme Pyjamask itself is not threatened by the work in this paper

    Code to count monomials of several rounds of Pyjamask

    No full text
    The result ons the number of monomials are obtained by running the code. Abstract from [Dobraunig, C., Rotella, Y., & Schoone, J. (2020). Algebraic and Higher-Order Differential Cryptanalysis of Pyjamask-96. IACR Transactions on Symmetric Cryptology, 2020(1), 289-312. DOI: https://doi.org/10.13154/tosc.v2020.i1.289-312] Cryptographic competitions, like the ongoing NIST call for lightweight cryptography, always provide a thriving research environment, where new interesting ideas are proposed and new cryptographic insights are made. One proposal for this NIST call that is accepted for the second round is Pyjamask. Pyjamask is an authenticated encryption scheme that builds upon two block ciphers, Pyjamask-96 and Pyjamask-128, that aim to minimize the number of AND operations at the cost of a very strong linear layer. A side-effect of this goal is a slow growth in the algebraic degree. In this paper, we focus on the block cipher Pyjamask-96 and are able to provide a theoretical key-recovery attack reaching 14 (out of 14) rounds as well as a practical attack on 8 rounds. We do this by combining higher-order differentials with an in-depth analysis of the system of equations gotten for 2.5 rounds of Pyjamask-96. The AEAD-scheme Pyjamask itself is not threatened by the work in this paper. In order to obtain the theoretical results for the key-recovery attack on 14 rounds, we needed to compute the number of monomials that would be present in the aforementioned system of equations. The deposited code is specifically written with this cipher and goal in mind. It is therefore usable to recheck the results indicated in Section 6.3 of the paper. Furthermore, one can adapt the code to compute the number of monomials present is a similar system of equations for a different cipher
    corecore