141 research outputs found

    A topos for algebraic quantum theory

    Get PDF
    The aim of this paper is to relate algebraic quantum mechanics to topos theory, so as to construct new foundations for quantum logic and quantum spaces. Motivated by Bohr's idea that the empirical content of quantum physics is accessible only through classical physics, we show how a C*-algebra of observables A induces a topos T(A) in which the amalgamation of all of its commutative subalgebras comprises a single commutative C*-algebra. According to the constructive Gelfand duality theorem of Banaschewski and Mulvey, the latter has an internal spectrum S(A) in T(A), which in our approach plays the role of a quantum phase space of the system. Thus we associate a locale (which is the topos-theoretical notion of a space and which intrinsically carries the intuitionistic logical structure of a Heyting algebra) to a C*-algebra (which is the noncommutative notion of a space). In this setting, states on A become probability measures (more precisely, valuations) on S(A), and self-adjoint elements of A define continuous functions (more precisely, locale maps) from S(A) to Scott's interval domain. Noting that open subsets of S(A) correspond to propositions about the system, the pairing map that assigns a (generalized) truth value to a state and a proposition assumes an extremely simple categorical form. Formulated in this way, the quantum theory defined by A is essentially turned into a classical theory, internal to the topos T(A).Comment: 52 pages, final version, to appear in Communications in Mathematical Physic

    The Deligne-Mumford compactification of the real multiplication locus and TeichmĂĽller curves in genus 3

    Get PDF

    Endomorphisms and automorphisms of locally covariant quantum field theories

    Full text link
    In the framework of locally covariant quantum field theory, a theory is described as a functor from a category of spacetimes to a category of *-algebras. It is proposed that the global gauge group of such a theory can be identified as the group of automorphisms of the defining functor. Consequently, multiplets of fields may be identified at the functorial level. It is shown that locally covariant theories that obey standard assumptions in Minkowski space, including energy compactness, have no proper endomorphisms (i.e., all endomorphisms are automorphisms) and have a compact automorphism group. Further, it is shown how the endomorphisms and automorphisms of a locally covariant theory may, in principle, be classified in any single spacetime. As an example, the endomorphisms and automorphisms of a system of finitely many free scalar fields are completely classified.Comment: v2 45pp, expanded to include additional results; presentation improved and an error corrected. To appear in Rev Math Phy

    Bohrification

    Get PDF
    New foundations for quantum logic and quantum spaces are constructed by merging algebraic quantum theory and topos theory. Interpreting Bohr's "doctrine of classical concepts" mathematically, given a quantum theory described by a noncommutative C*-algebra A, we construct a topos T(A), which contains the "Bohrification" B of A as an internal commutative C*-algebra. Then B has a spectrum, a locale internal to T(A), the external description S(A) of which we interpret as the "Bohrified" phase space of the physical system. As in classical physics, the open subsets of S(A) correspond to (atomic) propositions, so that the "Bohrified" quantum logic of A is given by the Heyting algebra structure of S(A). The key difference between this logic and its classical counterpart is that the former does not satisfy the law of the excluded middle, and hence is intuitionistic. When A contains sufficiently many projections (e.g. when A is a von Neumann algebra, or, more generally, a Rickart C*-algebra), the intuitionistic quantum logic S(A) of A may also be compared with the traditional quantum logic, i.e. the orthomodular lattice of projections in A. This time, the main difference is that the former is distributive (even when A is noncommutative), while the latter is not. This chapter is a streamlined synthesis of 0709.4364, 0902.3201, 0905.2275.Comment: 44 pages; a chapter of the first author's PhD thesis, to appear in "Deep Beauty" (ed. H. Halvorson

    The algebra of entanglement and the geometry of composition

    Full text link
    String diagrams turn algebraic equations into topological moves that have recurring shapes, involving the sliding of one diagram past another. We individuate, at the root of this fact, the dual nature of polygraphs as presentations of higher algebraic theories, and as combinatorial descriptions of "directed spaces". Operations of polygraphs modelled on operations of topological spaces are used as the foundation of a compositional universal algebra, where sliding moves arise from tensor products of polygraphs. We reconstruct several higher algebraic theories in this framework. In this regard, the standard formalism of polygraphs has some technical problems. We propose a notion of regular polygraph, barring cell boundaries that are not homeomorphic to a disk of the appropriate dimension. We define a category of non-degenerate shapes, and show how to calculate their tensor products. Then, we introduce a notion of weak unit to recover weakly degenerate boundaries in low dimensions, and prove that the existence of weak units is equivalent to a representability property. We then turn to applications of diagrammatic algebra to quantum theory. We re-evaluate the category of Hilbert spaces from the perspective of categorical universal algebra, which leads to a bicategorical refinement. Then, we focus on the axiomatics of fragments of quantum theory, and present the ZW calculus, the first complete diagrammatic axiomatisation of the theory of qubits. The ZW calculus has several advantages over ZX calculi, including a computationally meaningful normal form, and a fragment whose diagrams can be read as setups of fermionic oscillators. Moreover, its generators reflect an operational classification of entangled states of 3 qubits. We conclude with generalisations of the ZW calculus to higher-dimensional systems, including the definition of a universal set of generators in each dimension.Comment: v2: changes to end of Chapter 3. v1: 214 pages, many figures; University of Oxford doctoral thesi
    • …
    corecore