2,123 research outputs found

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    S+Net: extending functional coordination with extra-functional semantics

    Get PDF
    This technical report introduces S+Net, a compositional coordination language for streaming networks with extra-functional semantics. Compositionality simplifies the specification of complex parallel and distributed applications; extra-functional semantics allow the application designer to reason about and control resource usage, performance and fault handling. The key feature of S+Net is that functional and extra-functional semantics are defined orthogonally from each other. S+Net can be seen as a simultaneous simplification and extension of the existing coordination language S-Net, that gives control of extra-functional behavior to the S-Net programmer. S+Net can also be seen as a transitional research step between S-Net and AstraKahn, another coordination language currently being designed at the University of Hertfordshire. In contrast with AstraKahn which constitutes a re-design from the ground up, S+Net preserves the basic operational semantics of S-Net and thus provides an incremental introduction of extra-functional control in an existing language.Comment: 34 pages, 11 figures, 3 table

    Executable component-based semantics

    Get PDF
    The potential benefits of formal semantics are well known. However, a substantial amount of work is required to produce a complete and accurate formal semantics for a major language; and when the language evolves, large-scale revision of the semantics may be needed to reflect the changes. The investment of effort needed to produce an initial definition, and subsequently to revise it, has discouraged language developers from using formal semantics. Consequently, many major programming languages (and most domain-specific languages) do not yet have formal semantic definitions.To improve the practicality of formal semantic definitions, the PLanCompS project has developed a component-based approach. In this approach, the semantics of a language is defined by translating its constructs (compositionally) to combinations of so-called fundamental constructs, or ‘funcons’. Each funcon is defined using a modular variant of Structural Operational Semantics, and forms a language-independent component that can be reused in definitions of different languages. A substantial library of funcons has been developed and tested in several case studies. Crucially, the definition of each funcon is fixed, and does not need changing when new funcons are added to the library.For specifying component-based semantics, we have designed and implemented a meta-language called CBS. It includes specification of abstract syntax, of its translation to funcons, and of the funcons themselves. Development of CBS specifications is supported by an integrated development environment. The accuracy of a language definition can be tested by executing the specified translation on programs written in the defined language, and then executing the resulting funcon terms using an interpreter generated from the CBS definitions of the funcons. This paper gives an introduction to CBS, illustrates its use, and presents the various tools involved in our implementation of CBS

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Extensible Languages for Flexible and Principled Domain Abstraction

    Get PDF
    Die meisten Programmiersprachen werden als Universalsprachen entworfen. UnabhĂ€ngig von der zu entwickelnden Anwendung, stellen sie die gleichen Sprachfeatures und Sprachkonstrukte zur VerfĂŒgung. Solch universelle Sprachfeatures ignorieren jedoch die spezifischen Anforderungen, die viele Softwareprojekte mit sich bringen. Als Gegenkraft zu Universalsprachen fördern domĂ€nenspezifische Programmiersprachen, modellgetriebene Softwareentwicklung und sprachorientierte Programmierung die Verwendung von DomĂ€nenabstraktion, welche den Einsatz von domĂ€nenspezifischen Sprachfeatures und Sprachkonstrukten ermöglicht. Insbesondere erlaubt DomĂ€nenabstraktion Programmieren auf dem selben Abstraktionsniveau zu programmieren wie zu denken und vermeidet dadurch die Notwendigkeit DomĂ€nenkonzepte mit universalsprachlichen Features zu kodieren. Leider ermöglichen aktuelle AnsĂ€tze zur DomĂ€nenabstraktion nicht die Entfaltung ihres ganzen Potentials. Einerseits mangelt es den AnsĂ€tzen fĂŒr interne domĂ€nenspezifische Sprachen an FlexibilitĂ€t bezĂŒglich der Syntax, statischer Analysen, und WerkzeugunterstĂŒtzung, was das tatsĂ€chlich erreichte Abstraktionsniveau beschrĂ€nkt. Andererseits mangelt es den AnsĂ€tzen fĂŒr externe domĂ€nenspezifische Sprachen an wichtigen Prinzipien, wie beispielsweise modularem Schließen oder Komposition von DomĂ€nenabstraktionen, was die Anwendbarkeit dieser AnsĂ€tze in der Entwicklung grĂ¶ĂŸerer Softwaresysteme einschrĂ€nkt. Wir verfolgen in der vorliegenden Doktorarbeit einen neuartigen Ansatz, welcher die Vorteile von internen und externen domĂ€nenspezifischen Sprachen vereint um flexible und prinzipientreue DomĂ€nenabstraktion zu unterstĂŒtzen. Wir schlagen bibliotheksbasierte erweiterbare Programmiersprachen als Grundlage fĂŒr DomĂ€nenabstraktion vor. In einer erweiterbaren Sprache kann DomĂ€nenabstraktion durch die Erweiterung der Sprache mit domĂ€nenspezifischer Syntax, statischer Analyse, und WerkzeugunterstĂŒtzung erreicht werden . Dies ermöglicht DomĂ€nenabstraktionen die selbe FlexibilitĂ€t wie externe domĂ€nenspezifische Sprachen. Um die Einhaltung ĂŒblicher Prinzipien zu gewĂ€hrleisten, organisieren wir Spracherweiterungen als Bibliotheken und verwenden einfache Import-Anweisungen zur Aktivierung von Erweiterungen. Dies erlaubt modulares Schließen (durch die Inspektion der Import-Anweisungen), unterstĂŒtzt die Komposition von DomĂ€nenabstraktionen (durch das Importieren mehrerer Erweiterungen), und ermöglicht die uniforme Selbstanwendbarkeit von Spracherweiterungen in der Entwicklung zukĂŒnftiger Erweiterungen (durch das Importieren von Erweiterungen in einer Erweiterungsdefinition). Die Organisation von Erweiterungen in Form von Bibliotheken ermöglicht DomĂ€nenabstraktionen die selbe Prinzipientreue wie interne domĂ€nenspezifische Sprachen. Wir haben die bibliotheksbasierte erweiterbare Programmiersprache SugarJ entworfen und implementiert. SugarJ Bibliotheken können Erweiterungen der Syntax, der statischen Analyse, und der WerkzeugunterstĂŒtzung von SugarJ deklarieren. Eine syntaktische Erweiterung besteht dabei aus einer erweiterten Syntax und einer Transformation der erweiterten Syntax in die Basissyntax von SugarJ. Eine Erweiterung der Analyse testet Teile des abstrakten Syntaxbaums der aktuellen Datei und produziert eine Liste von Fehlern. Eine Erweiterung der WerkzeugunterstĂŒtzung deklariert Dienste wie SyntaxfĂ€rbung oder CodevervollstĂ€ndigung fĂŒr bestimmte Sprachkonstrukte. SugarJ Erweiterungen sind vollkommen selbstanwendbar: Eine erweiterte Syntax kann in eine Erweiterungsdefinition transformiert werden, eine erweiterte Analyse kann Erweiterungsdefinitionen testen, und eine erweiterte WerkzeugunterstĂŒtzung kann Entwicklern beim Definieren von Erweiterungen assistieren. Um eine Quelldatei mit Erweiterungen zu verarbeiten, inspizieren der SugarJ Compiler und die SugarJ IDE die importierten Bibliotheken um die aktiven Erweiterungen zu bestimmen. Der Compiler und die IDE adaptieren den Parser, den Codegenerator, die Analyseroutine und die WerkzeugunterstĂŒtzung der Quelldatei entsprechend der aktiven Erweiterungen. Wir beschreiben in der vorliegenden Doktorarbeit nicht nur das Design und die Implementierung von SugarJ, sondern berichten darĂŒber hinaus ĂŒber Erweiterungen unseres ursprĂŒnglich Designs. Insbesondere haben wir eine Generalisierung des SugarJ Compilers entworfen und implementiert, die neben Java alternative Basissprachen unterstĂŒtzt. Wir haben diese Generalisierung verwendet um die bibliotheksbasierten erweiterbaren Programmiersprachen SugarHaskell, SugarProlog, und SugarFomega zu entwickeln. Weiterhin haben wir SugarJ ergĂ€nzt um polymorphe DomĂ€nenabstraktion und KommunikationsintegritĂ€t zu unterstĂŒtzen. Polymorphe DomĂ€nenabstraktion ermöglicht Programmierern mehrere Transformationen fĂŒr die selbe domĂ€nenspezifische Syntax bereitzustellen. Dies erhöht die FlexibilitĂ€t von SugarJ und unterstĂŒtzt bekannte Szenarien aus der modellgetriebenen Entwicklung. KommunikationsintegritĂ€t spezifiziert, dass die Komponenten eines Softwaresystems nur ĂŒber explizite KanĂ€le kommunizieren dĂŒrfen. Im Kontext von Codegenerierung stellt dies eine interessante Eigenschaft dar, welche die Generierung von impliziten ModulabhĂ€ngigkeiten untersagt. Wir haben KommunikationsintegritĂ€t als weiteres Prinzip zu SugarJ hinzugefĂŒgt. Basierend auf SugarJ und zahlreicher Fallstudien argumentieren wir, dass flexible und prinzipientreue DomĂ€nenabstraktion ein skalierbares Programmiermodell fĂŒr die Entwicklung komplexer Softwaresysteme darstellt
    • 

    corecore