29 research outputs found

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the previously known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces.Comment: 9 pages, no figures. The framework presented in this article supersedes the one given in arXiv:1206.0260 by the first autho

    Algebraic techniques in designing quantum synchronizable codes

    Get PDF
    Quantum synchronizable codes are quantum error-correcting codes that can correct the effects of quantum noise as well as block synchronization errors. We improve the known general framework for designing quantum synchronizable codes through more extensive use of the theory of finite fields. This makes it possible to widen the range of tolerable magnitude of block synchronization errors while giving mathematical insight into the algebraic mechanism of synchronization recovery. Also given are families of quantum synchronizable codes based on punctured Reed-Muller codes and their ambient spaces

    Block synchronization for quantum information

    Get PDF
    Locating the boundaries of consecutive blocks of quantum information is a fundamental building block for advanced quantum computation and quantum communication systems. We develop a coding theoretic method for properly locating boundaries of quantum information without relying on external synchronization when block synchronization is lost. The method also protects qubits from decoherence in a manner similar to conventional quantum error-correcting codes, seamlessly achieving synchronization recovery and error correction. A family of quantum codes that are simultaneously synchronizable and error-correcting is given through this approach.Comment: 7 pages, no figures, final accepted version for publication in Physical Review

    Quantum Synchronizable Codes From Quadratic Residue Codes and Their Supercodes

    Full text link
    Quantum synchronizable codes are quantum error-correcting codes designed to correct the effects of both quantum noise and block synchronization errors. While it is known that quantum synchronizable codes can be constructed from cyclic codes that satisfy special properties, only a few classes of cyclic codes have been proved to give promising quantum synchronizable codes. In this paper, using quadratic residue codes and their supercodes, we give a simple construction for quantum synchronizable codes whose synchronization capabilities attain the upper bound. The method is applicable to cyclic codes of prime length

    Quantum Synchronizable Codes From Finite Geometries

    Get PDF
    Quantum synchronizable error-correcting codes are special quantum error-correcting codes that are designed to correct both the effect of quantum noise on qubits and misalignment in block synchronization. It is known that, in principle, such a code can be constructed through a combination of a classical linear code and its subcode if the two are both cyclic and dual-containing. However, finding such classical codes that lead to promising quantum synchronizable error-correcting codes is not a trivial task. In fact, although there are two families of classical codes that are proved to produce quantum synchronizable codes with good minimum distances and highest possible tolerance against misalignment, their code lengths have been restricted to primes and Mersenne numbers. In this paper, examining the incidence vectors of projective spaces over the finite fields of characteristic 2, we give quantum synchronizable codes from cyclic codes whose lengths are not primes or Mersenne numbers. These projective geometric codes achieve good performance in quantum error correction and possess the best possible ability to recover synchronization, thereby enriching the variety of good quantum synchronizable codes. We also extend the current knowledge of cyclic codes in classical coding theory by explicitly giving generator polynomials of the finite geometric codes and completely characterizing the minimum weight nonzero codewords. In addition to the codes based on projective spaces, we carry out a similar analysis on the well-known cyclic codes from Euclidean spaces that are known to be majority logic decodable and determine their exact minimum distances
    corecore