3,649 research outputs found

    Algebraic Proofs over Noncommutative Formulas

    Get PDF
    AbstractWe study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege, yielding a semantic way to define a Cook–Reckhow (i.e., polynomially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al. (1997) and Grigoriev and Hirsch (2003). We then turn to an apparently weaker system, namely, polynomial calculus (PC) where polynomials are written as ordered formulas (PC over ordered formulas, for short). Given some fixed linear order on variables, an arithmetic formula is ordered if for each of its product gates the left subformula contains only variables that are less-than or equal, according to the linear order, than the variables in the right subformula of the gate. We show that PC over ordered formulas (when the base field is of zero characteristic) is strictly stronger than resolution, polynomial calculus and polynomial calculus with resolution (PCR), and admits polynomial-size refutations for the pigeonhole principle and Tseitinʼs formulas. We conclude by proposing an approach for establishing lower bounds on PC over ordered formulas proofs, and related systems, based on properties of lower bounds on noncommutative formulas (Nisan, 1991).The motivation behind this work is developing techniques incorporating rank arguments (similar to those used in arithmetic circuit complexity) for establishing lower bounds on propositional proofs

    The Lorentzian distance formula in noncommutative geometry

    Get PDF
    For almost twenty years, a search for a Lorentzian version of the well-known Connes' distance formula has been undertaken. Several authors have contributed to this search, providing important milestones, and the time has now come to put those elements together in order to get a valid and functional formula. This paper presents a historical review of the construction and the proof of a Lorentzian distance formula suitable for noncommutative geometry.Comment: 16 pages, final form, few references adde

    Grothendieck duality made simple

    Full text link
    It has long been accepted that the foundations of Grothendieck duality are complicated. This has changed recently. By "Grothendieck duality" we mean what, in the old literature, used to go by the name "coherent duality". This isn't to be confused with what is nowadays called "Verdier duality", and used to pass as "â„“\ell-adic duality".Comment: Revised to incorporate improvements suggested by a few people, most notably an anonymous refere

    Algebraic properties of Manin matrices 1

    Get PDF
    We study a class of matrices with noncommutative entries, which were first considered by Yu. I. Manin in 1988 in relation with quantum group theory. They are defined as "noncommutative endomorphisms" of a polynomial algebra. More explicitly their defining conditions read: 1) elements in the same column commute; 2) commutators of the cross terms are equal: [Mij,Mkl]=[Mkj,Mil][M_{ij}, M_{kl}] = [M_{kj}, M_{il}] (e.g. [M11,M22]=[M21,M12][M_{11},M_{22}] = [M_{21},M_{12}]). The basic claim is that despite noncommutativity many theorems of linear algebra hold true for Manin matrices in a form identical to that of the commutative case. Moreover in some examples the converse is also true. The present paper gives a complete list and detailed proofs of algebraic properties of Manin matrices known up to the moment; many of them are new. In particular we present the formulation in terms of matrix (Leningrad) notations; provide complete proofs that an inverse to a M.m. is again a M.m. and for the Schur formula for the determinant of a block matrix; we generalize the noncommutative Cauchy-Binet formulas discovered recently [arXiv:0809.3516], which includes the classical Capelli and related identities. We also discuss many other properties, such as the Cramer formula for the inverse matrix, the Cayley-Hamilton theorem, Newton and MacMahon-Wronski identities, Plucker relations, Sylvester's theorem, the Lagrange-Desnanot-Lewis Caroll formula, the Weinstein-Aronszajn formula, some multiplicativity properties for the determinant, relations with quasideterminants, calculation of the determinant via Gauss decomposition, conjugation to the second normal (Frobenius) form, and so on and so forth. We refer to [arXiv:0711.2236] for some applications.Comment: 80 page

    Noncommutative Koszul Algebras from Combinatorial Topology

    Full text link
    Associated to any uniform finite layered graph Gamma there is a noncommutative graded quadratic algebra A(Gamma) given by a construction due to Gelfand, Retakh, Serconek and Wilson. It is natural to ask when these algebras are Koszul. Unfortunately, a mistake in the literature states that all such algebras are Koszul. That is not the case and the theorem was recently retracted. We analyze the Koszul property of these algebras for two large classes of graphs associated to finite regular CW complexes, X. Our methods are primarily topological. We solve the Koszul problem by introducing new cohomology groups H_X(n,k), generalizing the usual cohomology groups H^n(X). Along with several other results, our methods give a new and primarily topological proof of a result of Serconek and Wilson and of Piontkovski.Comment: 22 pages, 1 figur

    Rota-Baxter algebras and new combinatorial identities

    Full text link
    The word problem for an arbitrary associative Rota-Baxter algebra is solved. This leads to a noncommutative generalization of the classical Spitzer identities. Links to other combinatorial aspects, particularly of interest in physics, are indicated.Comment: 8 pages, improved versio
    • …
    corecore