1,881 research outputs found

    Trifocal Relative Pose from Lines at Points and its Efficient Solution

    Full text link
    We present a new minimal problem for relative pose estimation mixing point features with lines incident at points observed in three views and its efficient homotopy continuation solver. We demonstrate the generality of the approach by analyzing and solving an additional problem with mixed point and line correspondences in three views. The minimal problems include correspondences of (i) three points and one line and (ii) three points and two lines through two of the points which is reported and analyzed here for the first time. These are difficult to solve, as they have 216 and - as shown here - 312 solutions, but cover important practical situations when line and point features appear together, e.g., in urban scenes or when observing curves. We demonstrate that even such difficult problems can be solved robustly using a suitable homotopy continuation technique and we provide an implementation optimized for minimal problems that can be integrated into engineering applications. Our simulated and real experiments demonstrate our solvers in the camera geometry computation task in structure from motion. We show that new solvers allow for reconstructing challenging scenes where the standard two-view initialization of structure from motion fails.Comment: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1439786 while most authors were in residence at Brown University's Institute for Computational and Experimental Research in Mathematics -- ICERM, in Providence, R

    Tube algebras, excitations statistics and compactification in gauge models of topological phases

    Full text link
    We consider lattice Hamiltonian realizations of (dd+1)-dimensional Dijkgraaf-Witten theory. In (2+1)d, it is well-known that the Hamiltonian yields point-like excitations classified by irreducible representations of the twisted quantum double. This can be confirmed using a tube algebra approach. In this paper, we propose a generalization of this strategy that is valid in any dimensions. We then apply the tube algebra approach to derive the algebraic structure of loop-like excitations in (3+1)d, namely the twisted quantum triple. The irreducible representations of the twisted quantum triple algebra correspond to the simple loop-like excitations of the model. Similarly to its (2+1)d counterpart, the twisted quantum triple comes equipped with a compatible comultiplication map and an RR-matrix that encode the fusion and the braiding statistics of the loop-like excitations, respectively. Moreover, we explain using the language of loop-groupoids how a model defined on a manifold that is nn-times compactified can be expressed in terms of another model in nn-lower dimensions. This can in turn be used to recast higher-dimensional tube algebras in terms of lower dimensional analogues.Comment: 71 page

    On Time Optimization of Centroidal Momentum Dynamics

    Full text link
    Recently, the centroidal momentum dynamics has received substantial attention to plan dynamically consistent motions for robots with arms and legs in multi-contact scenarios. However, it is also non convex which renders any optimization approach difficult and timing is usually kept fixed in most trajectory optimization techniques to not introduce additional non convexities to the problem. But this can limit the versatility of the algorithms. In our previous work, we proposed a convex relaxation of the problem that allowed to efficiently compute momentum trajectories and contact forces. However, our approach could not minimize a desired angular momentum objective which seriously limited its applicability. Noticing that the non-convexity introduced by the time variables is of similar nature as the centroidal dynamics one, we propose two convex relaxations to the problem based on trust regions and soft constraints. The resulting approaches can compute time-optimized dynamically consistent trajectories sufficiently fast to make the approach realtime capable. The performance of the algorithm is demonstrated in several multi-contact scenarios for a humanoid robot. In particular, we show that the proposed convex relaxation of the original problem finds solutions that are consistent with the original non-convex problem and illustrate how timing optimization allows to find motion plans that would be difficult to plan with fixed timing.Comment: 7 pages, 4 figures, ICRA 201

    Group field theories for all loop quantum gravity

    Full text link
    Group field theories represent a 2nd quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the GFT formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.Comment: version published in New Journal of Physic
    • 

    corecore