15,713 research outputs found

    A Generic Module System forWeb Rule Languages: Divide and Rule

    Get PDF
    An essential feature in practically usable programming languages is the ability to encapsulate functionality in reusable modules. Modules make large scale projects tractable by humans. For Web and Semantic Web programming, many rule-based languages, e.g. XSLT, CSS, Xcerpt, SWRL, SPARQL, and RIF Core, have evolved or are currently evolving. Rules are easy to comprehend and specify, even for non-technical users, e.g. business managers, hence easing the contributions to the Web. Unfortunately, those contributions are arguably doomed to exist in isolation as most rule languages are conceived without modularity, hence without an easy mechanism for integration and reuse. In this paper a generic module system applicable to many rule languages is presented. We demonstrate and apply our generic module system to a Datalog-like rule language, close in spirit to RIF Core. The language is gently introduced along the EU-Rent use case. Using the Reuseware Composition Framework, the module system for a concrete language can be achieved almost for free, if it adheres to the formal notions introduced in this paper

    Secure Cloud-Edge Deployments, with Trust

    Get PDF
    Assessing the security level of IoT applications to be deployed to heterogeneous Cloud-Edge infrastructures operated by different providers is a non-trivial task. In this article, we present a methodology that permits to express security requirements for IoT applications, as well as infrastructure security capabilities, in a simple and declarative manner, and to automatically obtain an explainable assessment of the security level of the possible application deployments. The methodology also considers the impact of trust relations among different stakeholders using or managing Cloud-Edge infrastructures. A lifelike example is used to showcase the prototyped implementation of the methodology

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Formal Verification of Security Protocol Implementations: A Survey

    Get PDF
    Automated formal verification of security protocols has been mostly focused on analyzing high-level abstract models which, however, are significantly different from real protocol implementations written in programming languages. Recently, some researchers have started investigating techniques that bring automated formal proofs closer to real implementations. This paper surveys these attempts, focusing on approaches that target the application code that implements protocol logic, rather than the libraries that implement cryptography. According to these approaches, libraries are assumed to correctly implement some models. The aim is to derive formal proofs that, under this assumption, give assurance about the application code that implements the protocol logic. The two main approaches of model extraction and code generation are presented, along with the main techniques adopted for each approac

    S+Net: extending functional coordination with extra-functional semantics

    Get PDF
    This technical report introduces S+Net, a compositional coordination language for streaming networks with extra-functional semantics. Compositionality simplifies the specification of complex parallel and distributed applications; extra-functional semantics allow the application designer to reason about and control resource usage, performance and fault handling. The key feature of S+Net is that functional and extra-functional semantics are defined orthogonally from each other. S+Net can be seen as a simultaneous simplification and extension of the existing coordination language S-Net, that gives control of extra-functional behavior to the S-Net programmer. S+Net can also be seen as a transitional research step between S-Net and AstraKahn, another coordination language currently being designed at the University of Hertfordshire. In contrast with AstraKahn which constitutes a re-design from the ground up, S+Net preserves the basic operational semantics of S-Net and thus provides an incremental introduction of extra-functional control in an existing language.Comment: 34 pages, 11 figures, 3 table
    corecore