2,842 research outputs found

    Modular Categories

    Full text link
    This is a review article on modular categories, extending an invited talk given at the workshop "Categorical (co)algebraic methods in quantum informatics and linguistics", Oxford, October 29-31, 2010. To appear in C. Heunen, M. Sadrzadeh, E. Grefenstette (eds.): Compositional methods in quantum physics and linguistics, Oxford University Press, 2012.Comment: latex2e, 28 pages. Sections 3.1-3.2 improved. Otherwise minor change

    High-Level Methods for Quantum Computation and Information

    Full text link
    A research programme is set out for developing the use of high-level methods for quantum computation and information, based on the categorical formulation of quantum mechanics introduced by the author and Bob Coecke.Comment: 5 page

    Universal Entanglers for Bosonic and Fermionic Systems

    Get PDF
    A universal entangler (UE) is a unitary operation which maps all pure product states to entangled states. It is known that for a bipartite system of particles 1,21,2 with a Hilbert space Cd1Cd2\mathbb{C}^{d_1}\otimes\mathbb{C}^{d_2}, a UE exists when min(d1,d2)3\min{(d_1,d_2)}\geq 3 and (d1,d2)(3,3)(d_1,d_2)\neq (3,3). It is also known that whenever a UE exists, almost all unitaries are UEs; however to verify whether a given unitary is a UE is very difficult since solving a quadratic system of equations is NP-hard in general. This work examines the existence and construction of UEs of bipartite bosonic/fermionic systems whose wave functions sit in the symmetric/antisymmetric subspace of CdCd\mathbb{C}^{d}\otimes\mathbb{C}^{d}. The development of a theory of UEs for these types of systems needs considerably different approaches from that used for UEs of distinguishable systems. This is because the general entanglement of identical particle systems cannot be discussed in the usual way due to the effect of (anti)-symmetrization which introduces "pseudo entanglement" that is inaccessible in practice. We show that, unlike the distinguishable particle case, UEs exist for bosonic/fermionic systems with Hilbert spaces which are symmetric (resp. antisymmetric) subspaces of CdCd\mathbb{C}^{d}\otimes\mathbb{C}^{d} if and only if d3d\geq 3 (resp. d8d\geq 8). To prove this we employ algebraic geometry to reason about the different algebraic structures of the bosonic/fermionic systems. Additionally, due to the relatively simple coherent state form of unentangled bosonic states, we are able to give the explicit constructions of two bosonic UEs. Our investigation provides insight into the entanglement properties of systems of indisitinguishable particles, and in particular underscores the difference between the entanglement structures of bosonic, fermionic and distinguishable particle systems.Comment: 15 pages, comments welcome, TQC2013 Accepted Tal
    corecore