5,217 research outputs found

    Algebraic Framework for Synchronous Language Semantics

    Get PDF
    International audienceIn this article, we study several relevant algebraic frameworks to define synchronous language semantics. Synchronous languages are quite dedicated to design critical embedded applications. Thus, verification and compilation is challenging and should rely on mathematical semantics. We study multi-valued algebras as foundation for semantics definition and we show that a 4-valued algebra with a bilattice structure is well suited to our concern. With this approach we can define semantics offering both the generation of models where verification techniques apply, and separated compilation means.Cet article étudie différents cadres algébriques adéquats pour définir les sémantiques des languages synchrones. Ces languages sont principalement dédiés à la conception de systÚmes crtiques embarqués. Leur vérification et leur compilation sont des challenges importants et doivent s'appuyer sur des sémantiques bien fondées mathématiquement. Dans cet article, nous étudions les algÚbres multi valuées et nous montrons qu'une algÚbre particuliÚre, 4-valuée avec une structure de bilattice répond à notre problÚme. Cette approche nous permet de définir une sémantique permettant l'application des techniques de vérification formelle et offrant la possibilité d'une compilation séparée

    Formal Model Engineering for Embedded Systems Using Real-Time Maude

    Full text link
    This paper motivates why Real-Time Maude should be well suited to provide a formal semantics and formal analysis capabilities to modeling languages for embedded systems. One can then use the code generation facilities of the tools for the modeling languages to automatically synthesize Real-Time Maude verification models from design models, enabling a formal model engineering process that combines the convenience of modeling using an informal but intuitive modeling language with formal verification. We give a brief overview six fairly different modeling formalisms for which Real-Time Maude has provided the formal semantics and (possibly) formal analysis. These models include behavioral subsets of the avionics modeling standard AADL, Ptolemy II discrete-event models, two EMF-based timed model transformation systems, and a modeling language for handset software.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    A process algebra for synchronous concurrent constraint programming

    Get PDF
    Concurrent constraint programming is classically based on asynchronous communication via a shared store. This paper presents new version of the ask and tell primitives which features synchronicity. Our approach is based on the idea of telling new information just in the case that a concurrently running process is asking for it. An operational and an algebraic semantics are defined. The algebraic semantics is proved to be sound and complete with respect to a compositional operational semantics which is also presented in the paper

    A Procedure for Splitting Processes and its Application to Coordination

    Full text link
    We present a procedure for splitting processes in a process algebra with multi-actions (a subset of the specification language mCRL2). This splitting procedure cuts a process into two processes along a set of actions A: roughly, one of these processes contains no actions from A, while the other process contains only actions from A. We state and prove a theorem asserting that the parallel composition of these two processes equals the original process under appropriate synchronization. We apply our splitting procedure to the process algebraic semantics of the coordination language Reo: using this procedure and its related theorem, we formally establish the soundness of splitting Reo connectors along the boundaries of their (a)synchronous regions in implementations of Reo. Such splitting can significantly improve the performance of connectors.Comment: In Proceedings FOCLASA 2012, arXiv:1208.432

    A process-algebraic semantics for generalised nonblocking.

    Get PDF
    Generalised nonblocking is a weak liveness property to express the ability of a system to terminate under given preconditions. This paper studies the notions of equivalence and refinement that preserve generalised nonblocking and proposes a semantic model that characterises generalised nonblocking equivalence. The model can be constructed from the transition structure of an automaton, and has a finite representation for every finite-state automaton. It is used to construct a unique automaton representation for all generalised nonblocking equivalent automata. This gives rise to effective decision procedures to verify generalised nonblocking equivalence and refinement, and to a method to simplify automata while preserving generalised nonblocking equivalence. The results of this paper provide for better understanding of nonblocking in a compositional framework, with possible applications in compositional verification

    A thread-tag based semantics for sequence diagrams

    Get PDF
    The sequence diagram is one of the most popular behaviour modelling languages which offers an intuitive and visual way of describing expected behaviour of object-oriented software. Much research work has investigated ways of providing a formal semantics for sequence diagrams. However, these proposed semantics may not properly interpret sequence diagrams when lifelines do not correspond to threads of controls. In this paper, we address this problem and propose a thread-tag based sequence diagram as a solution. A formal, partially ordered multiset based semantics for the thread-tag based sequence diagrams is proposed
    • 

    corecore