215 research outputs found

    Parity properties of Costas arrays defined via finite fields

    Full text link
    A Costas array of order nn is an arrangement of dots and blanks into nn rows and nn columns, with exactly one dot in each row and each column, the arrangement satisfying certain specified conditions. A dot occurring in such an array is even/even if it occurs in the ii-th row and jj-th column, where ii and jj are both even integers, and there are similar definitions of odd/odd, even/odd and odd/even dots. Two types of Costas arrays, known as Golomb-Costas and Welch-Costas arrays, can be defined using finite fields. When qq is a power of an odd prime, we enumerate the number of even/even odd/odd, even/odd and odd/even dots in a Golomb-Costas array. We show that three of these numbers are equal and they differ by ±1\pm 1 from the fourth. For a Welch-Costas array of order p−1p-1, where pp is an odd prime, the four numbers above are all equal to (p−1)/4(p-1)/4 when p≡1(mod4)p\equiv 1\pmod{4}, but when p≡3(mod4)p\equiv 3\pmod{4}, we show that the four numbers are defined in terms of the class number of the imaginary quadratic field Q(−p)\mathbb{Q}(\sqrt{-p}), and thus behave in a much less predictable manner.Comment: To appear in Advances in Mathematics of Communication

    Two-dimensional patterns with distinct differences; constructions, bounds, and maximal anticodes

    Get PDF
    A two-dimensional (2-D) grid with dots is called a configuration with distinct differences if any two lines which connect two dots are distinct either in their length or in their slope. These configurations are known to have many applications such as radar, sonar, physical alignment, and time-position synchronization. Rather than restricting dots to lie in a square or rectangle, as previously studied, we restrict the maximum distance between dots of the configuration; the motivation for this is a new application of such configurations to key distribution in wireless sensor networks. We consider configurations in the hexagonal grid as well as in the traditional square grid, with distances measured both in the Euclidean metric, and in the Manhattan or hexagonal metrics. We note that these configurations are confined inside maximal anticodes in the corresponding grid. We classify maximal anticodes for each diameter in each grid. We present upper bounds on the number of dots in a pattern with distinct differences contained in these maximal anticodes. Our bounds settle (in the negative) a question of Golomb and Taylor on the existence of honeycomb arrays of arbitrarily large size. We present constructions and lower bounds on the number of dots in configurations with distinct differences contained in various 2-D shapes (such as anticodes) by considering periodic configurations with distinct differences in the square grid

    A review of Costas arrays

    Get PDF
    Costas arrays are not only useful in radar engineering, but they also present many interesting, and still open, mathematical problems. This work collects in it all important knowledge about them available today: some history of the subjects, density results, construction methods, construction algorithms with full proofs, and open questions. At the same time all the necessary mathematical background is offered in the simplest possible format and terms, so that this work can play the role of a reference for mathematicians and mathematically inclined engineers interested in the field

    Algebraic symmetries of generic (m+1)(m+1) dimensional periodic Costas arrays

    Full text link
    In this work we present two generators for the group of symmetries of the generic (m+1)(m+1) dimensional periodic Costas arrays over elementary abelian (Zp)m(\mathbb{Z}_p)^m groups: one that is defined by multiplication on mm dimensions and the other by shear (addition) on mm dimensions. Through exhaustive search we observe that these two generators characterize the group of symmetries for the examples we were able to compute. Following the results, we conjecture that these generators characterize the group of symmetries of the generic (m+1)(m+1) dimensional periodic Costas arrays over elementary abelian (Zp)m(\mathbb{Z}_p)^m groups
    • 

    corecore