3,019 research outputs found

    Data mining based cyber-attack detection

    Get PDF

    A survey of intrusion detection system technologies

    Get PDF
    This paper provides an overview of IDS types and how they work as well as configuration considerations and issues that affect them. Advanced methods of increasing the performance of an IDS are explored such as specification based IDS for protecting Supervisory Control And Data Acquisition (SCADA) and Cloud networks. Also by providing a review of varied studies ranging from issues in configuration and specific problems to custom techniques and cutting edge studies a reference can be provided to others interested in learning about and developing IDS solutions. Intrusion Detection is an area of much required study to provide solutions to satisfy evolving services and networks and systems that support them. This paper aims to be a reference for IDS technologies other researchers and developers interested in the field of intrusion detection

    Information Fusion for Anomaly Detection with the Dendritic Cell Algorithm

    Get PDF
    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a Dendritic Cell Algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the Dendritic Cell Algorithm is sucessful at detecting port scans.Comment: 21 pages, 17 figures, Information Fusio

    Minimization of DDoS false alarm rate in Network Security; Refining fusion through correlation

    Get PDF
    Intrusion Detection Systems are designed to monitor a network environment and generate alerts whenever abnormal activities are detected. However, the number of these alerts can be very large making their evaluation a difficult task for a security analyst. Alert management techniques reduce alert volume significantly and potentially improve detection performance of an Intrusion Detection System. This thesis work presents a framework to improve the effectiveness and efficiency of an Intrusion Detection System by significantly reducing the false positive alerts and increasing the ability to spot an actual intrusion for Distributed Denial of Service attacks. Proposed sensor fusion technique addresses the issues relating the optimality of decision-making through correlation in multiple sensors framework. The fusion process is based on combining belief through Dempster Shafer rule of combination along with associating belief with each type of alert and combining them by using Subjective Logic based on Jøsang theory. Moreover, the reliability factor for any Intrusion Detection System is also addressed accordingly in order to minimize the chance of false diagnose of the final network state. A considerable number of simulations are conducted in order to determine the optimal performance of the proposed prototype

    Design and analysis of information fusion, dynamic sensor management rules for cyber security systems using simulation

    Get PDF
    Computer networks are vulnerable to attacks from outside threats. Intrusion detection systems are used to monitor computer networks for attacker activity. Intrusion detection systems consist of a set of sensors placed strategically throughout a computer network. The large amounts of data produced by intrusion detection system sensors may be sent to and processed by information fusion engines. Information fusion engines correlate alerts and identify attack paths of attackers. Sensor management strategies are developed to minimize the time taken to process attack data, minimize the bandwidth used by the security system of a network, and maximize the number of attacks successfully tracked. An experimental performance evaluation is conducted on sensor management strategies utilizing a variety of representative network topologies, network sizes, alert rates and attack scenarios so that a robust sensor management strategy can be identified. Performance measures of interest include the average time taken to process a real alert at the fusion engine, the percentage of real alerts processed, the percentage of noise alerts processed, the average bandwidth used to transfer alerts, and ability of a sensor management rule to successfully track multiple attacks consistently. Results indicate rules that attempt to meet but not exceed network constraints outperform rules that disregard network constraints. Additionally, rules that take into consideration the progress of current attacks also show some benefits

    Comprehensive Security Framework for Global Threats Analysis

    Get PDF
    Cyber criminality activities are changing and becoming more and more professional. With the growth of financial flows through the Internet and the Information System (IS), new kinds of thread arise involving complex scenarios spread within multiple IS components. The IS information modeling and Behavioral Analysis are becoming new solutions to normalize the IS information and counter these new threads. This paper presents a framework which details the principal and necessary steps for monitoring an IS. We present the architecture of the framework, i.e. an ontology of activities carried out within an IS to model security information and User Behavioral analysis. The results of the performed experiments on real data show that the modeling is effective to reduce the amount of events by 91%. The User Behavioral Analysis on uniform modeled data is also effective, detecting more than 80% of legitimate actions of attack scenarios
    • …
    corecore