5,869 research outputs found

    Detecting Activations over Graphs using Spanning Tree Wavelet Bases

    Full text link
    We consider the detection of activations over graphs under Gaussian noise, where signals are piece-wise constant over the graph. Despite the wide applicability of such a detection algorithm, there has been little success in the development of computationally feasible methods with proveable theoretical guarantees for general graph topologies. We cast this as a hypothesis testing problem, and first provide a universal necessary condition for asymptotic distinguishability of the null and alternative hypotheses. We then introduce the spanning tree wavelet basis over graphs, a localized basis that reflects the topology of the graph, and prove that for any spanning tree, this approach can distinguish null from alternative in a low signal-to-noise regime. Lastly, we improve on this result and show that using the uniform spanning tree in the basis construction yields a randomized test with stronger theoretical guarantees that in many cases matches our necessary conditions. Specifically, we obtain near-optimal performance in edge transitive graphs, kk-nearest neighbor graphs, and ϵ\epsilon-graphs

    A manifold learning approach to target detection in high-resolution hyperspectral imagery

    Get PDF
    Imagery collected from airborne platforms and satellites provide an important medium for remotely analyzing the content in a scene. In particular, the ability to detect a specific material within a scene is of high importance to both civilian and defense applications. This may include identifying targets such as vehicles, buildings, or boats. Sensors that process hyperspectral images provide the high-dimensional spectral information necessary to perform such analyses. However, for a d-dimensional hyperspectral image, it is typical for the data to inherently occupy an m-dimensional space, with m \u3c\u3c d. In the remote sensing community, this has led to a recent increase in the use of manifold learning, which aims to characterize the embedded lower-dimensional, non-linear manifold upon which the hyperspectral data inherently lie. Classic hyperspectral data models include statistical, linear subspace, and linear mixture models, but these can place restrictive assumptions on the distribution of the data; this is particularly true when implementing traditional target detection approaches, and the limitations of these models are well-documented. With manifold learning based approaches, the only assumption is that the data reside on an underlying manifold that can be discretely modeled by a graph. The research presented here focuses on the use of graph theory and manifold learning in hyperspectral imagery. Early work explored various graph-building techniques with application to the background model of the Topological Anomaly Detection (TAD) algorithm, which is a graph theory based approach to anomaly detection. This led towards a focus on target detection, and in the development of a specific graph-based model of the data and subsequent dimensionality reduction using manifold learning. An adaptive graph is built on the data, and then used to implement an adaptive version of locally linear embedding (LLE). We artificially induce a target manifold and incorporate it into the adaptive LLE transformation; the artificial target manifold helps to guide the separation of the target data from the background data in the new, lower-dimensional manifold coordinates. Then, target detection is performed in the manifold space
    • …
    corecore