12,153 research outputs found

    Analysis of airplane boarding via space-time geometry and random matrix theory

    Full text link
    We show that airplane boarding can be asymptotically modeled by 2-dimensional Lorentzian geometry. Boarding time is given by the maximal proper time among curves in the model. Discrepancies between the model and simulation results are closely related to random matrix theory. We then show how such models can be used to explain why some commonly practiced airline boarding policies are ineffective and even detrimental.Comment: 4 page

    Optimal boarding method for airline passengers

    Get PDF
    Using a Markov Chain Monte Carlo optimization algorithm and a computer simulation, I find the passenger ordering which minimizes the time required to board the passengers onto an airplane. The model that I employ assumes that the time that a passenger requires to load his or her luggage is the dominant contribution to the time needed to completely fill the aircraft. The optimal boarding strategy may reduce the time required to board and airplane by over a factor of four and possibly more depending upon the dimensions of the aircraft. In addition, knowledge of the optimal boarding procedure can inform decisions regarding changes to methods that are employed by a particular carrier. I explore some of the salient features of the optimal boarding method and discuss practical modifications to the optimal. Finally, I mention some of the benefits that could come from implementing an improved passenger boarding scheme.Comment: Accepted for publication in the Journal of Air Transport Management. This study was motivated by an experience that occurred while traveling to a conference. Version 1: 15 pages, 7 figures--likely to be of more technical interest. Version 2: 14 pages, 6 figures--more complete bibliography and some additional commentar

    Experimental test of airplane boarding methods

    Get PDF
    We report the results of an experimental comparison of different airplane boarding methods. This test was conducted in a mock 757 fuselage, located on a Southern California soundstage, with 12 rows of six seats and a single aisle. Five methods were tested using 72 passengers of various ages. We found a significant reduction in the boarding times of optimized methods over traditional methods. These improved methods, if properly implemented, could result in a significant savings to airline companies.Comment: 8 pages, submitted to the Journal of Air Transport Managemen

    Enhancing airplane boarding procedure using vision based passenger classification

    Get PDF
    This paper presents the implementation of a new boarding strategy that exploits passenger and hand-luggage detection and classification to reduce the boarding time onto an airplane. A vision system has the main purpose of providing passengers data, in terms of agility coefficient and hand-luggage size to a seat assignment algorithm. The software is able to dynamically generate the passenger seat that reduces the overall boarding time while taking into account the current airplane boarding state. The motivation behind this work is to speed up of the passenger boarding using the proposed online procedure of seat assignment based on passenger and luggage classification. This method results in an enhancement of the boarding phase, in terms of both time and passenger experience. The main goal of this work is to demonstrate the usability of the proposed system in real conditions proving its performances in terms of reliability. Using a simple hardware and software setup, we performed several experiments recreating a gate entrance mock up and comparing the measurements with ground truth data to assess the reliability of the system

    A statistical mechanics model for free-for-all airplane passenger boarding

    Get PDF
    I present and discuss a model for the free-for-all passenger boarding which is employed by some discount air carriers. The model is based on the principles of statistical mechanics where each seat in the aircraft has an associated energy which reflects the preferences of the population of air travelers. As each passenger enters the airplane they select their seats using Boltzmann statistics, proceed to that location, load their luggage, sit down, and the partition function seen by remaining passengers is modified to reflect this fact. I discuss the various model parameters and make qualitative comparisons of this passenger boarding model with models which involve assigned seats. This model can also be used to predict the probability that certain seats will be occupied at different times during the boarding process. These results may be of value to industry professionals as a useful description of this boarding method. However, it also has significant value as a pedagogical tool since it is a relatively unusual application of undergraduate level physics and it describes a situation with which many students and faculty may be familiar.Comment: version 1: 4 pages 2 figures version 2: 7 pages with 5 figure

    The Impact of Effectiveness of Luggage Arrangement on the Airplane Passengers' Boarding Process

    Get PDF
    The boarding process is the role activity to maintain the airline's efficiency in the turnaround process on the ground. One of the scenarios to optimize the boarding process is the arrangement of passengers who enter the plane based on the amount of carry-on luggage, adjusted to the selected boarding strategy. This research aims to develop an agent-based simulation model to increase the effectiveness of passengers' boarding process by applying the luggage arrangement method for an airplane with a 180-seat configuration. The simulation results showed that applying the Ascending luggage arrangement method reduced the overall boarding process performance by 6.12%, while the Descending method increased boarding performance by 2.50%, compared to the standard Random method

    Robustness of Efficient Passenger Boarding Strategies for Airplanes

    Get PDF
    Common wisdom is that airplanes make money only when they are in the air. Therefore, turnaround time (turn time) on the ground should be reduced as much as possible. An important contribution to the turn time is airplane boarding time. Many different schemes are in use, from random seat selection to sophisticated boarding groups. A simulation model is described to evaluate different boarding strategies. In contrast to earlier work, it puts special emphasis on disturbances, such as a certain number of passengers not following their boarding group but boarding earlier or later. A surprising result of this work is that the typical back-to-front boarding strategy becomes improved when passengers do not board with their assigned group. Other proposed strategies still consist of small numbers of boarding groups but are both faster and more robust with regard to disturbances
    corecore