1,447 research outputs found

    Advanced Signal Processing For Multi-Mission Airborne Radar

    Get PDF
    With the technological advancement of the 21st century, functions of different radars are being merged. A multi-functional system brings the technology of remote sensing to a wide array of applications while at the same time reduces costs of implementation and operation. Ground-based multi-mission radars have been studied in the past. The airborne counterpart deserves a through study with additional and stringent requirements of cost, size, weight, and power.In this dissertation, multi-mission functions in an airborne radar is performed using modular, software-based architecture. The software-based solution is chosen instead of proposing new hardware, primarily because evaluation, validation, and certification of new hardware is onerous and time consuming. The system implementations are validated using simulations as well as field measurements. The simulations are carried out using Mathworks® Phased Array System Toolbox. The field measurements are performed using an enhanced commercial airborne radar system called Polarimetric Airborne Radar Operating at X-band Version 1 (PARADOX1), which is an X-band, vertically polarized, solid state, pulsed radar.The shortcomings of PARADOX1 originate from small aperture size and low power. Various signal processing algorithms are developed and applied to PARADOX1 data to enhance the data quality. Super-resolution algorithms in range, angle, and Doppler domains, for example, have proven to effectively enhance the spatial resolution. An end-to-end study of single-polarized weather measurements is performed using PARADOX1 measurements. The results are compared with well established ground-based radars. The similarities, differences as well as limitations (of such comparisons) are discussed. Sense and Avoid (SAA) tracking is considered as a core functionality and presented in the context of safe integration of Unmanned Aerial Vehicles (UAV) in national airspace. A "nearly" constant acceleration motion model is used in conjunction with Kalman Filter and Joint Probabilistic Data Association (JPDA) to perform tracking operations. The basic SAA tracking function is validated through simulations as well as field measurements.The field-validations show that a modular, software-based enhancement to an existing radar system is a viable solution in realizing multi-mission functionalities in an airborne radar. The SAA tracking is validated in ground-based tests using an x86 based PC with a generic Linux operating system. The weather measurements from PARADOX1 and the subsequent data quality enhancements show that PARADOX1 data products are comparable to those of existing ground based radars

    Novel Methods in Computational Imaging with Applications in Remote Sensing

    Get PDF
    This dissertation is devoted to novel computational imaging methods with applications in remote sensing. Computational imaging methods are applied to three distinct applications including imaging and detection of buried explosive hazards utilizing array radar, high resolution imaging of satellites in geosynchronous orbit utilizing optical hypertelescope arrays, and characterization of atmospheric turbulence through multi-frame blind deconvolution utilizing conventional optical digital sensors. The first application considered utilizes a radar array employed as a forward looking ground penetrating radar system with applications in explosive hazard detection. A penalized least squares technique with sparsity-inducing regularization is applied to produce imagery, which is consistent with the expectation that objects are sparsely populated but extended with respect to the pixel grid. Additionally, a series of pre-processing steps is demonstrated which result in a greatly reduced data size and computational cost. Demonstrations of the approach are provided using experimental data and results are given in terms of signal to background ratio, image resolution, and relative computation time. The second application involves a sparse-aperture telescope array configured as a hypertelescope with applications in long range imaging. The penalized least squares technique with sparsity-inducing regularization is adapted and applied to this very different imaging modality. A comprehensive study of the algorithm tuning parameters is performed and performance is characterized using the Structure Similarity Metric (SSIM) to maximize image quality. Simulated measurements are used to show that imaging performance achieved using the pro- posed algorithm compares favorably in comparison to conventional Richardson-Lucy deconvolution. The third application involves a multi-frame collection from a conventional digital sensor with the primary objective of characterizing the atmospheric turbulence in the medium of propagation. In this application a joint estimate of the image is obtained along with the Zernike coefficients associated with the atmospheric PSF at each frame, and the Fried parameter r0 of the atmosphere. A pair of constraints are applied to a penalized least squares objective function to enforce the theoretical statistics of the set of PSF estimates as a function of r0. Results of the approach are shown with both simulated and experimental data and demonstrate excellent agreement between the estimated r0 values and the known or measured r0 values respectively

    An Approach to Ground Moving Target Indication Using Multiple Resolutions of Multilook Synthetic Aperture Radar Images

    Get PDF
    Ground moving target indication (GMTI) using multiple resolutions of synthetic aperture radar (SAR) images to estimate the clutter scattering statistics is shown to outperform conventional sample matrix inversion space-time adaptive processing GMTI techniques when jamming is not present. A SAR image provides an estimate of scattering from nonmoving targets in the form of a clutter scattering covariance matrix for the GMTI optimum processor. Since the homogeneity of the scattering statistics are unknown, using SAR images at multiple spatial resolutions to estimate the clutter scattering statistics results in more confidence in the final detection decision. Two approaches to calculating the multiple SAR resolutions are investigated. Multiple resolution filter bank smoothing of the full-resolution SAR image is shown to outperform an innovative approach to multilook SAR imaging. The multilook SAR images are calculated from a single measurement vector partitioned base on synthetic sensor locations determined via eigenanalysis of the radar measurement parameters

    Hyperspectral Remote Sensing Data Analysis and Future Challenges

    Full text link

    Mismatched Processing for Radar Interference Cancellation

    Get PDF
    Matched processing is a fundamental filtering operation within radar signal processing to estimate scattering in the radar scene based on the transmit signal. Although matched processing maximizes the signal-to-noise ratio (SNR), the filtering operation is ineffective when interference is captured in the receive measurement. Adaptive interference mitigation combined with matched processing has proven to mitigate interference and estimate the radar scene. A known caveat of matched processing is the resulting sidelobes that may mask other scatterers. The sidelobes can be efficiently addressed by windowing but this approach also comes with limited suppression capabilities, loss in resolution, and loss in SNR. The recent emergence of mismatch processing has shown to optimally reduce sidelobes while maintaining nominal resolution and signal estimation performance. Throughout this work, re-iterative minimum-mean square error (RMMSE) adaptive and least-squares (LS) optimal mismatch processing are proposed for enhanced signal estimation in unison with adaptive interference mitigation for various radar applications including random pulse repetition interval (PRI) staggering pulse-Doppler radar, airborne ground moving target indication, and radar & communication spectrum sharing. Mismatch processing and adaptive interference cancellation each can be computationally complex for practical implementation. Sub-optimal RMMSE and LS approaches are also introduced to address computational limitations. The efficacy of these algorithms is presented using various high-fidelity Monte Carlo simulations and open-air experimental datasets
    corecore