8 research outputs found

    Étude des interférences sur les mesures micro-ondes passives en bande L à l’aide de radiomètres au sol et aéroportés

    Get PDF
    Certaines données satellitaires ne sont pas utilisées à cause des acquisitions bruitées qui ne reflètent pas les distributions des grandeurs géophysiques du sol, telle que l’humidité du sol. La cause primordiale dans les micro-ondes passives vient des interférences radio fréquence (RFI). Ainsi, les températures apparentes mesurées par un satellite comme SMOS par exemple atteignent souvent des valeurs qui conduisent à des échecs d’inversion de l’humidité du sol. L’objectif de notre projet est d’étudier le phénomène des RFI à petite échelle, son impact sur les micro-ondes passives en bande L à partir des mesures au sol réalisées à l’aide de radiomètres. Une fois l’impact caractérisé de manière rigoureuse, une méthode de filtrage adaptatif a été développée pour corriger les effets. Le projet est composé de trois parties principales. La mise en place d’une expérimentation est réalisée afin de faire des mesures au sol à l’aide de deux radiomètres en bande L. Les mesures sont faites dans des conditions variables et plusieurs scénarios ont été considérés. Ensuite, les données sont collectées et analysées. Cette phase a abouti au développement d’un filtre qui permet d’atténuer l’effet des RFI sur les températures de brillance bruitées. Enfin, le filtre proposé dans le projet a été appliqué sur des données aéroportées en bande L prises sur le site Boreal Ecosystem Research and Monitoring Sites (BERMS) en Saskatchewan. L’expérimentation s’est déroulée à la station SIRENE de l’Université de Sherbrooke. Les instruments ont été mis en place et les radiomètres ont été calibrés en premier lieu pour s’assurer de la fiabilité des mesures. L’émetteur a servi comme une source d’interférence pour les radiomètres. Il était placé à des positions différentes vis-à-vis de ces derniers, et émettait à des puissances variables. Les différents scénarios considérés étaient utiles pour étudier l’effet de la position de la source RFI, ainsi que l’effet de la puissance émise par celle-là sur les températures mesurées par les radiomètres. Pour les mesures, nous avons utilisé un radiomètre multi-bandes qui nous a permis d’étudier l’impact de la bande passante sur les RFI. L’analyse et le traitement des données prises ont conduit au développement d’un filtre coupe-bande permettant de corriger les températures bruitées lorsque les caractéristiques du bruit sont connues. Ce filtre a été appliqué sur des données aéroportées bruitées. Le bruit a pu être atténué pour les températures en polarisation V. Les résultats de l’application du filtre sont satisfaisants dans l’ensemble malgré le volume important de données bruitées sur la zone d’étude. En ce qui concerne les données de la polarisation H, elles n’ont pu être corrigées, car elles étaient presque entièrement bruitées. Le mémoire porte sur une expérimentation originale, car les expériences du genre sont très rares dans la littérature. L’étude s’appuie sur deux radiomètres en bande L, ce qui est très particulier, compte tenu de la rareté de ces instruments

    Validation et désagrégation de l’humidité du sol estimée par le satellite SMOS en zones agricoles et forestières des Prairies canadiennes

    Get PDF
    Résumé : Le satellite Soil Moisture and Ocean Salinity (SMOS), lancé en novembre 2009, est le premier satellite en mode passif opérant en bande-L. Cette fréquence est considérée comme optimale pour estimer l’humidité du sol. SMOS est destiné à cartographier l’humidité de la couche 0-5 cm du sol à l’échelle globale, avec une précision attendue inférieure à 0,04 m3/m3, une répétitivité temporelle inférieure à 3 jours et une résolution spatiale d’environ 40 km. L’objectif de cette thèse est de valider l’humidité du sol de SMOS sur des sites agricoles et forestiers situés au Canada, et de contribuer au développement de méthodes de désagrégation de l’humidité du sol estimée par SMOS dans le but d’exploiter ces données dans les études à l’échelle locale telle qu’en agriculture. Les données de la campagne de terrain CanEx-SM10, effectuée sur un site agricole (Kenaston) et un site forestier (BERMS) situés à Saskatchewan, et celles de la campagne SMAPVEX12, effectuée sur un site majoritairement agricole (Winnipeg) situé au Manitoba, sont utilisées. Les données d’humidité du sol de SMOS ont montré une amélioration de la version v.309 à la version v.551. La version 551 des données d’humidité du sol de SMOS se compare mieux aux mesures in situ que les autres versions, aussi bien sur les sites agricoles que sur le site forestier. Sur les sites agricoles, l’humidité du sol de SMOS a montré une bonne corrélation avec les mesures au sol, particulièrement avec la version 551 (R ≥ 0,58, en modes ascendant et descendant), ainsi qu’une certaine sensibilité à la pluviométrie. Néanmoins, SMOS sous-estime l’humidité du sol en général. Cette sous-estimation est moins marquée sur le site de Kenaston en mode descendant (|biais| ≈ 0,03 m3/m3, avec la version v.551). Sur le site forestier, en raison de la densité de la végétation, les algorithmes d’estimation de l’humidité du sol à partir des mesures SMOS ne sont pas encore efficaces, malgré les améliorations apportées dans la version v.551. Par ailleurs, sur le site agricole de Kenaston et le site forestier de BERMS, les données d’humidité du sol de SMOS ont montré, généralement, de meilleures performances par rapport aux produits d’humidité du sol d’AMSR-E/NSIDC, AMSR-E/VUA et ASCAT/SSM. DISaggregation based on Physical And Theoretical scale Change (DISPATCH), un algorithme de désagrégation à base physique, est utilisé pour désagréger à 1 km de résolution spatiale l’humidité du sol de SMOS (40 km de résolution) sur les deux sites agricoles situés à Kenaston et à Winnipeg. DISPATCH est basé sur l’efficacité d’évaporation du sol (SEE) estimée à partir des données optique/ thermique de MODIS, et un modèle linéaire/non-linéaire liant l’efficacité d’évaporation et l’humidité du sol à l’échelle locale. Sur un site présentant une bonne dynamique spatiale et temporelle de l’humidité du sol (le site de Winnipeg au cours de la campagne de terrain SMAPVEX12), les résultats de DISPATCH obtenus avec le modèle linéaire sont légèrement meilleurs (R = 0,81 ; RMSE = 0.05 m3/m3 et pente = 0,52, par rapport aux mesures in situ) comparés aux résultats obtenus avec le modèle non-linéaire (R = 0,72 ; RMSE = 0.06 m3/m3 et pente = 0,61, par rapport aux mesures in situ). La précision de l’humidité du sol dérivée de DISPATCH, en se basant sur les deux modèles linéaire et non linéaire, décroit quand l’humidité du sol à grande échelle croît. Cette étude a montré, également, que DISPATCH peut être généralisé sur des sites particulièrement humides (le site de Kenaston au cours de la campagne de terrain CanEx-SM10). Cependant, en conditions humides, les résultats dérivés avec le modèle non-linéaire (R > 0,70, RMSE = 0,04 m3/m3 et pente ≈ 0,80, par rapport aux valeurs d’humidité du sol dérivées des mesures aéroportées de la température de brillance en bande L) ont montré de meilleures performances comparées à ceux dérivés avec le modèle linéaire (R > 0,73, RMSE = 0,08 m3/m3 et pente > 1.5, par rapport aux valeurs d’humidité du sol dérivées des mesures aéroportées de la température de brillance en bande L). Ceci est dû à une sous-estimation systématique de la limite sèche Tsmax. Par ailleurs, l’humidité du sol désagrégée présente une forte sensibilité à〖 Ts〗_max, particulièrement avec le modèle linéaire. Une approche simple a été proposée pour améliorer l’estimation de〖 Ts〗_max, dans des zones particulièrement humides. Elle a permis de réduire l’impact de l’incertitude sur〖 Ts〗_max dans le processus de désagrégation. Avec 〖 Ts〗_max améliorée, le modèle linaire aboutit à de meilleurs résultats (R > 0,72, RMSE = 0,04 m3/m3 et pente ≈ 0,80, par rapport aux valeurs d’humidité du sol estimées à partir des mesures aéroportées de la température de brillance en bande-L) que le modèle non-linéaire (R > 0,64, RMSE = 0,05 m3/m3 et pente ≈ 0,3, par rapport aux valeurs d’humidité du sol estimées à partir des mesures aéroportées de la température de brillance en bande-L). Basé sur des données optiques/ thermiques de MODIS, DISPATCH n’est pas applicable pour les journées nuageuses. Pour surmonter cette limitation, une nouvelle méthode a été proposée. Elle consiste à combiner DISPATCH avec le schéma de surface Canadian Land Surface Scheme (CLASS). Les données d’humidité du sol à 1 km de résolution dérivées de DISPATCH pour les journées non nuageuses sont utilisées pour calibrer les simulations de CLASS disponibles continuellement aux heures de passage de SMOS. Une approche de calibration basée sur la correction de la pente entre les valeurs d’humidité du sol dérivées de CLASS et les valeurs d’humidité du sol dérivées de DISPATCH (données de référence) a été mise au point. Les résultats montrent que les données d’humidité du sol à 1 km de résolution dérivées de cette nouvelle approche pour les journées nuageuses se comparent bien aux mesures in situ (R = 0,80 ; biais = -0,01 m3/m3 et pente = 0,74). Pour les journées non nuageuses, les valeurs d’humidité du sol dérivées de DISPATCH seul se comparent mieux aux mesures in situ que les valeurs dérivées en combinant DISPATCH à CLASS.Abstract : The Soil Moisture and Ocean Salinity (SMOS), launched in November 2009, is the first passive microwave satellite operating in L band which is considered as optimal for soil moisture estimation. It is designed to provide global soil moisture maps at 0 – 5 cm layer from soil surface with a targeted accuracy of 0.04 m3 / m3, revisit time of less than 3 days anda spatial resolution of about 40 km. The objective of this thesis is to validate SMOS soil moisture data over agricultural and forested sites located in Canada, and to contribute to the development of SMOS downscaling methods in order to exploit these data in local scale studies such as agriculture. The data used are collected during the CanEX-SM10 field campaign, conducted over an agricultural site (Kenaston) and a forested site (BERMS) located in Saskatchewan, and during SMAPVEX12 field campaign conducted over a mostly agricultural area (Winnipeg) located in Manitoba. SMOS soil moisture data showed an improvement from the processor versions 309 to 551. Version 551 was found to be closer and more correlated to ground measurements over both agricultural and forested sites. For the agricultural sites, SMOS soil moisture showed high correlation coefficient with ground data especially with version 551(R ≥ 0.58, for ascending and descending overpasses), as well as a certain sensitivity to rainfall events. However, the SMOS soil moisture values were underestimated compared with ground measurements. This underestimation is less pronounced for the descending overpass over the Kenaston site (|bias| viii ≈ 0.03 m3/m3, for version v.551). For the forested site, due to the vegetation density, the SMOS soil moisture estimation algorithms were not very efficient despite the improvements brought to version 551. Moreover, over the agricultural site of Kenaston and the forested site of BERMS, SMOS soil moisture data showed, in general, good performances compared to AMSR-E/NSIDC, AMSR-E/VUA and ASCAT/SSM soil moisture products. DISaggregation based on Physical And Theoretical scale Change (DISPATCH), a physically-based downscaling algorithm, was used to downscale at 1-km spatial resolution the SMOS soil moisture estimates (40-km resolution) over the agricultural sites located in Kenaston and Winnipeg. DISPATCH is based on the Soil Evaporative Efficiency (SEE) derived from optical/thermal MODIS data, and a linear/non-linear model linking the Soil Evaporative Efficiency to the near-surface soil moisture at local scale. Over a site with a good spatial and temporal dynamics of soil moisture (such as Winnipeg’s site during the SMAPVEX12 field campaign), slightly better results were obtained with DISPATCH based on the linear model (R = 0.81, RMSE = 0.05 m3 /m3 and slope = 0.52, with respect to ground data) compared to results obtained from the non-linear model (R = 0.72, RMSE = 0.06 m3 /m3 and slope = 0.61, with respect to ground data). The accuracy of the DISPATCH-derived soil moisture, using both linear and non-linear models, decreases when the large-scale soil moisture increases. This study also showed, also, that DISPATCH can be generalized for very wet soil conditions (Kenaston’s site during the CanEX-SM10 field campaign). However, under wet soil conditions, better results were obtained with DISTACH based on the nonlinear (R > 0.70, RMSE = 0.04 m3/m3 and slope ≈ 0.80, with respect to the estimated soil moisture form L-band airborne brightness temperature) compared to results obtained with ix DISPATCH based on the linear model (R > 0.73, RMSE = 0.08 m3/m3 and slope > 1.5, with respect to the estimated soil moisture form L-band airborne brightness temperature). This is due to a systematic underestimation of the dry edge Tsmax. Furthermore, the downscaling results were found to be very sensitive to , particularly with the linear model. A simple approach was proposed to improve the estimation of Tsmax under very wet soil conditions. It allowed reducing the impact of uncertainty in the disaggregation process. Using the improved Tsmax value, better results were obtained with the linear model (R > 0.72, RMSE = 0.04 m3/m3 and slope ≈ 0.80, with respect to the estimated soil moisture form L-band airborne brightness temperature) compared to the non-linear model (R > 0.64, RMSE = 0.05m3/m3 and slope ≈ 0.3, with respect to the estimated soil moisture form L-band airborne brightness temperature). Based on optical/thermal MODIS data, DISPATCH is not applicable for cloudy days. To overcome this limitation, a new method was proposed. It involves the combination of DISPATCH with the Canadian Land Surface Scheme (CLASS). DISPATCH-derived soil moisture data for cloud-free days are used to calibrate CLASS soil moisture simulations which are continually available at SMOS overpasses times. A calibration approach based on slope correction between the CLASS-derived and DISPATCH-derived (reference data) soil moisture datasets is considered. Results showed that soil moisture values derived from this newly developed method during cloudy days compare well with in situ data (R = 0.80, RMSE = 0.07 m3/m3 and slope = 0.73). For no-cloudy days, DISTATCH-derived soil moisture data are closer to in situ data than those derived when combining DISPATCH with CLASS

    An Open Logic Approach to EPM

    Get PDF
    open2noEPM is a high operative and didactic versatile tool and new application areas are envisaged continuously. In turn, this new awareness has allowed to enlarge our panorama for neurocognitive system EPM is a high operative and didactic versatile tool and new application areas are envisaged continuosly. In turn, this new awareness has allowed to enlarge our panorama for neurocognitive system behavior understanding, and to develop information conservation and regeneration systems in a numeric self-reflexive/reflective evolutive reference framework. Unfortunately, a logically closed model cannot cope with ontological uncertainty by itself; it needs a complementary logical aperture operational support extension. To achieve this goal, it is possible to use two coupled irreducible information management subsystems, based on the following ideal coupled irreducible asymptotic dichotomy: "Information Reliable Predictability" and "Information Reliable Unpredictability" subsystems. To behave realistically, overall system must guarantee both Logical Closure and Logical Aperture, both fed by environmental "noise" (better… from what human beings call "noise"). So, a natural operating point can emerge as a new Trans-disciplinary Reality Level, out of the Interaction of Two Complementary Irreducible Information Management Subsystems within their environment. In this way, it is possible to extend the traditional EPM approach in order to profit by both classic EPM intrinsic Self-Reflexive Functional Logical Closure and new numeric CICT Self-Reflective Functional Logical Aperture. EPM can be thought as a reliable starting subsystem to initialize a process of continuous self-organizing and self-logic learning refinement. understanding, and to develop information conservation and regeneration systems in a numeric self-reflexive/reflective evolutive reference framework. Unfortunately, a logically closed model cannot cope with ontological uncertainty by itself; it needs a complementary logical aperture operational support extension. To achieve this goal, it is possible to use two coupled irreducible information management subsystems, based on the following ideal coupled irreducible asymptotic dichotomy: "Information Reliable Predictability" and "Information Reliable Unpredictability" subsystems. To behave realistically, overall system must guarantee both Logical Closure and Logical Aperture, both fed by environmental "noise" (better… from what human beings call "noise"). So, a natural operating point can emerge as a new Trans-disciplinary Reality Level, out of the Interaction of Two Complementary Irreducible Information Management Subsystems within their environment. In this way, it is possible to extend the traditional EPM approach in order to profit by both classic EPM intrinsic Self-Reflexive Functional Logical Closure and new numeric CICT Self-Reflective Functional Logical Aperture. EPM can be thought as a reliable starting subsystem to initialize a process of continuous self-organizing and self-logic learning refinement.Fiorini, Rodolfo; Degiacomo, PieroFiorini, Rodolfo; Degiacomo, Pier

    The Entropy Conundrum: A Solution Proposal

    Get PDF
    In 2004, physicist Mark Newman, along with biologist Michael Lachmann and computer scientist Cristopher Moore, showed that if electromagnetic radiation is used as a transmission medium, the most information-efficient format for a given 1-D signal is indistinguishable from blackbody radiation. Since many natural processes maximize the Gibbs-Boltzmann entropy, they should give rise to spectra indistinguishable from optimally efficient transmission. In 2008, computer scientist C.S. Calude and physicist K. Svozil proved that "Quantum Randomness" is not Turing computable. In 2013, academic scientist R.A. Fiorini confirmed Newman, Lachmann and Moore's result, creating analogous example for 2-D signal (image), as an application of CICT in pattern recognition and image analysis. Paradoxically if you don’t know the code used for the message you can’t tell the difference between an information-rich message and a random jumble of letters. This is an entropy conundrum to solve. Even the most sophisticated instrumentation system is completely unable to reliably discriminate so called "random noise" from any combinatorically optimized encoded message, which CICT called "deterministic noise". Entropy fundamental concept crosses so many scientific and research areas, but, unfortunately, even across so many different disciplines, scientists have not yet worked out a definitive solution to the fundamental problem of the logical relationship between human experience and knowledge extraction. So, both classic concept of entropy and system random noise should be revisited deeply at theoretical and operational level. A convenient CICT solution proposal will be presented

    Evaluating Radio Frequency Interference Detection Algorithms for SMAP (Soil Moisture Active Passive)

    Get PDF
    SMAP (Soil Moisture Active Passive) is a mission to be launched by NASA to measure soil moisture of the Earth’s land surface. The SMAP radiometer operates in the L-band protected spectrum (1400-1427 MHz) that is known to be vulnerable to radio frequency interference (RFI). Radiometric observations show substantial evidence of out-of-band emissions from neighboring transmitters and possibly illegally operating emitters. SMAP faces large levels of RFI and also significant amounts of low-level RFI equivalent to 0.1 K to 10 K of brightness temperature. Such low-level interference would be enough to jeopardize mission success without an aggressive mitigation solution. A decision has been made to employ an advanced digital microwave radiometer, the first of its kind for spaceflight, for use on SMAP. The mission takes a multi-domain approach to RFI mitigation utilizing an innovative on-board digital detector backend with DSP algorithms to detect and filter out harmful interference. Four different baseline RFI detectors are run on the ground and their outputs combined for a maximum probability of detection to remove RFI within a footprint. The SMAP radiometer outputs the first four raw moments of the receiver system noise voltage in 16 frequency channels for measurement of noise temperature and kurtosis as well as complex cross-correlation products for measuring the third and fourth Stokes parameters. Evaluating each of the four individual RFI detection algorithms is essential to ensure the highest efficiency produced by the maximum probability of detection. Receiver operating characteristic (ROC) curves are generated for each of the different detectors to evaluate performance. ROC curves plot the probability of detection versus false alarm rate. The optimum case would correspond to the highest probability of detection (PD) and lowest false alarm rate (FAR). A given threshold for the RFI algorithms would produce a corresponding (PD, FAR). The rest of the line curve is graphed by varying threshold from a minimal value to a maximal value. The ROC curves are performed on all different RFI algorithm detectors which include time-domain, cross-frequency, kurtosis, and polarization detectors. Each detector operates differently and behaves differently under different injected RFI. Different injected RFI include pulsed and sinusoidal at different frequencies, amplitudes, and power. The focus of the study is to optimize each of the given RFI detectors given any RFI signal. For example, since the cross-frequency algorithm uses only frequency resolution and no time resolution, its performance should be best for RFI that is localized in frequency. Since continuous wave (CW) RFI are localized in frequency by definition, as expected, the cross- frequency detector performed very well against CW RFI relative to other detectors. The RFI detection performance that is ultimately achieved will be a function of the threshold (that returns the highest PD versus lowest FAR), the nature of the RFI encountered, and radiometer system parameters such as the number of frequency channels and the integration period.NASA (Goddard Space Flight Center)SMAP MissionNo embargoAcademic Major: Electrical and Computer Engineerin

    Soil Moisture Active Passive (SMAP) Project Algorithm Theoretical Basis Document SMAP L1B Radiometer Data Product: L1B_TB

    Get PDF
    The purpose of the Soil Moisture Active Passive (SMAP) radiometer calibration algorithm is to convert Level 0 (L0) radiometer digital counts data into calibrated estimates of brightness temperatures referenced to the Earth's surface within the main beam. The algorithm theory in most respects is similar to what has been developed and implemented for decades for other satellite radiometers; however, SMAP includes two key features heretofore absent from most satellite borne radiometers: radio frequency interference (RFI) detection and mitigation, and measurement of the third and fourth Stokes parameters using digital correlation. The purpose of this document is to describe the SMAP radiometer and forward model, explain the SMAP calibration algorithm, including approximations, errors, and biases, provide all necessary equations for implementing the calibration algorithm and detail the RFI detection and mitigation process. Section 2 provides a summary of algorithm objectives and driving requirements. Section 3 is a description of the instrument and Section 4 covers the forward models, upon which the algorithm is based. Section 5 gives the retrieval algorithm and theory. Section 6 describes the orbit simulator, which implements the forward model and is the key for deriving antenna pattern correction coefficients and testing the overall algorithm

    Development of Radio Frequency Interference Detection Algorithm for Passive Microwave Remote Sensing

    Full text link
    Radio Frequency Interference (RFI) signals are man-made sources that are increasingly plaguing passive microwave remote sensing measurements. RFI is of insidious nature, with some signals low power enough to go undetected but large enough to impact science measurements and their results. With the launch of the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) satellite in November 2009 and the upcoming launches of the new NASA sea-surface salinity measuring Aquarius mission in June 2011 and soil-moisture measuring Soil Moisture Active Passive (SMAP) mission around 2015, active steps are being taken to detect and mitigate RFI at L-band. An RFI detection algorithm was designed for the Aquarius mission. The algorithm performance was analyzed using kurtosis based RFI ground-truth. The algorithm has been developed with several adjustable location dependant parameters to control the detection statistics (false-alarm rate and probability of detection). The kurtosis statistical detection algorithm has been compared with the Aquarius pulse detection method. The comparative study determines the feasibility of the kurtosis detector for the SMAP radiometer, as a primary RFI detection algorithm in terms of detectability and data bandwidth. The kurtosis algorithm has superior detection capabilities for low duty-cycle radar like pulses, which are more prevalent according to analysis of field campaign data. Most RFI algorithms developed have generally been optimized for performance with individual pulsed-sinusoidal RFI sources. A new RFI detection model is developed that takes into account multiple RFI sources within an antenna footprint. The performance of the kurtosis detection algorithm under such central-limit conditions is evaluated. The SMOS mission has a unique hardware system, and conventional RFI detection techniques cannot be applied. Instead, an RFI detection algorithm for SMOS is developed and applied in the angular domain. This algorithm compares brightness temperature values at various incidence angles for a particular grid location. This algorithm is compared and contrasted with other algorithms present in the visibility domain of SMOS, as well as the spatial domain. Initial results indicate that the SMOS RFI detection algorithm in the angular domain has a higher sensitivity and lower false-alarm rate than algorithms developed in the other two domains.Ph.D.Atmospheric and Space SciencesUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/86308/1/samisra_1.pd
    corecore