9,007 research outputs found

    Air Traffic Management Safety Challenges

    No full text
    The primary goal of the Air Traffic Management (ATM) system is to control accident risk. ATM safety has improved over the decades for many reasons, from better equipment to additional safety defences. But ATM safety targets, improving on current performance, are now extremely demanding. Safety analysts and aviation decision-makers have to make safety assessments based on statistically incomplete evidence. If future risks cannot be estimated with precision, then how is safety to be assured with traffic growth and operational/technical changes? What are the design implications for the USA’s ‘Next Generation Air Transportation System’ (NextGen) and Europe’s Single European Sky ATM Research Programme (SESAR)? ATM accident precursors arise from (eg) pilot/controller workload, miscommunication, and lack of upto- date information. Can these accident precursors confidently be ‘designed out’ by (eg) better system knowledge across ATM participants, automatic safety checks, and machine rather than voice communication? Future potentially hazardous situations could be as ‘messy’ in system terms as the Überlingen mid-air collision. Are ATM safety regulation policies fit for purpose: is it more and more difficult to innovate, to introduce new technologies and novel operational concepts? Must regulators be more active, eg more inspections and monitoring of real operational and organisational practices

    A survey of new technology for cockpit application to 1990's transport aircraft simulators

    Get PDF
    Two problems were investigated: inter-equipment data transfer, both on board the aircraft and between air and ground; and crew equipment communication via the cockpit displays and controls. Inter-equipment data transfer is discussed in terms of data bus and data link requirements. Crew equipment communication is discussed regarding the availability of CRT display systems for use in research simulators to represent flat panel displays of the future, and of software controllable touch panels

    Creating an Agent Based Framework to Maximize Information Utility

    Get PDF
    With increased reliance on communications to conduct military operations, information centric network management becomes vital. A Defense department study of information management for net-centric operations lists the need for tools for information triage (based on relevance, priority, and quality) to counter information overload, semi-automated mechanisms for assessment of quality and relevance of information, and advances to enhance cognition and information understanding in the context of missions [30]. Maximizing information utility to match mission objectives is a complex problem that requires a comprehensive solution in information classification, in scheduling, in resource allocation, and in QoS support. Of these research areas, the resource allocation mechanism provides a framework to build the entire solution. Through an agent based mindset, the lessons of robot control architecture are applied to the network domain. The task of managing information flows is achieved with a hybrid reactive architecture. By demonstration, the reactive agent responds to the observed state of the network through the Unified Behavior Framework (UBF). As information flows relay through the network, agents in the network nodes limit resource contention to improve average utility and create a network with smarter bandwidth utilization. While this is an important result for information maximization, the agent based framework may have broader applications for managing communication networks

    Progress Toward Future Runway Management

    Get PDF
    The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making

    Questioning, exploring, narrating and playing in the control room to maintain system safety

    Get PDF
    Systems whose design is primarily aimed at ensuring efficient, effective and safe working, such as control rooms, have traditionally been evaluated in terms of criteria that correspond directly to those values: functional correctness, time to complete tasks, etc. This paper reports on a study of control room working that identified other factors that contributed directly to overall system safety. These factors included the ability of staff to manage uncertainty, to learn in an exploratory way, to reflect on their actions, and to engage in problem-solving that has many of the hallmarks of playing puzzles which, in turn, supports exploratory learning. These factors, while currently difficult to measure or explicitly design for, must be recognized and valued in design
    corecore