789 research outputs found

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Urban Air Pollution Monitoring Using Wireless Sensor Networks: A Comprehensive Review

    Get PDF
    Air pollution is evolving as a severe environmental concern due to its enormous impact on the well being of the people, universal environment and also on the global economy. Conventional air pollution systems are not able to provide air pollution data of high spatiotemporal resolution due to non-scalability and limited data availability. With the advances in the areas of Micro Electro Mechanical Sensor (MEMS) and Wireless Sensor Network (WSN), the researchers had implemented various state-of-the-art air pollution monitoring systems with better and efficient results. A comprehensive review of continuous air pollution surveillance of both indoor and outdoor pollution by employing WSN was presented. In the proposed paper attempts to provide the details related to the existing methods for measuring major air pollutants like CO2, CO, O3, SO2, VOC and Particulate Matter (PM). It presents the various methods, algorithms and dedicated network designs in air pollution monitoring which are useful for generating new solutions to improve the performance through WSN. A comprehensive and detailed review of the existing methods of Air Quality Monitoring systems using WSN was done along with their comparison

    Wireless Sensor Node Employed Air Quality Monitoring and Analysis based on Gsm

    Get PDF
    The main objective of this project is to devise a simple low cost microcontroller based air pollution monitoring system using wireless technology which finds presence of various gases like CO2, SO, NO,etc and parameters like humidity ,temperature ,etc. , displays it on LCD and forwards it to remote user. This project is developed by using PIC 16F877A Microcontroller, SIM 900 GSM Module, JHD204A LCD display and gas sensors. The advantage of using GSM based technology is that GSM based communication network is distributed over a large area and have almost reached to every part of this 21st century world. GSM technology also do provide users with high quality signal and channels, giving them access to high quality digital communication at reasonable cost. This embedded system can prove to be useful for anyone who wish to monitor the quality of air at a location without being physically present there .The main advantages of the research are that the system may be able to collect the pollution levels throughout the 24 hours of the day and that the data so collected may serve as a data base which can be used for various analysis whenever required .The system may offer pollutant levels of a particular industry and this estimation may serve as an enchiridion to the government for allowing or disallowing a particular industry to be set up in a particular area

    Analytical characterisation of the terahertz in-vivo nano-network in the presence of interference based on TS-OOK communication scheme

    Get PDF
    The envisioned dense nano-network inside the human body at terahertz (THz) frequency suffers a communication performance degradation among nano-devices. The reason for this performance limitation is not only the path loss and molecular absorption noise, but also the presence of multi-user interference and the interference caused by utilising any communication scheme, such as time spread ON—OFF keying (TS-OOK). In this paper, an interference model utilising TS-OOK as a communication scheme of the THz communication channel inside the human body has been developed and the probability distribution of signal-to-interference-plus-noise ratio (SINR) for THz communication within different human tissues, such as blood, skin, and fat, has been analyzed and presented. In addition, this paper evaluates the performance degradation by investigating the mean values of SINR under different node densities in the area and the probabilities of transmitting pulses. It results in the conclusion that the interference restrains the achievable communication distance to approximate 1 mm, and more specific range depends on the particular transmission circumstance. Results presented in this paper also show that by controlling the pulse transmission probability and node density, the system performance can be ameliorated. In particular, SINR of in vivo THz communication between the deterministic targeted transmitter and the receiver with random interfering nodes in the medium improves about 10 dB, when the node density decreases one order. The SINR increases approximate 5 and 2 dB, when the pulse transmitting probability drops from 0.5 to 0.1 and 0.9 to 0.5
    • …
    corecore