3,074 research outputs found

    Position Based Balloon Angioplasty

    Get PDF
    Balloon angioplasty is an endovascular procedure to widen narrowed or obstructed blood vessels, typically to treat arterial atherosclerosis. Simulating angioplasty procedure in the complex vascular structures is a challenge task since the balloon and vessels are both flexible bodies. In this paper, we proposed a position based balloon physical model to solve nonlinear physical deformation in the process of balloon inflation. Firstly, the balloon is discrete modeled by the closed triangle mesh, and the hyperelastic membrane material and continuum based formulation are combined to compute the mechanical properties in the process of balloon inflation. Then, an adaptive air mesh generation algorithm is proposed as a preprocessing procedure for accelerating the coming collision process between balloon and blood vessel according to the characteristic of collision area which is relative fixed. The experiment results show that this physical model is feasible, which could simulate the contact and deformation process between the inflation balloon and the diseased blood vessel wall with good robustness and in realtime

    Diffusion-Based Coarse Graining in Hybrid Continuum-Discrete Solvers: Applications in CFD-DEM

    Full text link
    In this work, a coarse-graining method previously proposed by the authors in a companion paper based on solving diffusion equations is applied to CFD-DEM simulations, where coarse graining is used to obtain solid volume fraction, particle phase velocity, and fluid-particle interaction forces. By examining the conservation requirements, the variables to solve diffusion equations for in CFD-DEM simulations are identified. The algorithm is then implemented into a CFD-DEM solver based on OpenFOAM and LAMMPS, the former being a general-purpose, three-dimensional CFD solver based on unstructured meshes. Numerical simulations are performed for a fluidized bed by using the CFD-DEM solver with the diffusion-based coarse-graining algorithm. Converged results are obtained on successively refined meshes, even for meshes with cell sizes comparable to or smaller than the particle diameter. This is a critical advantage of the proposed method over many existing coarse-graining methods, and would be particularly valuable when small cells are required in part of the CFD mesh to resolve certain flow features such as boundary layers in wall bounded flows and shear layers in jets and wakes. Moreover, we demonstrate that the overhead computational costs incurred by the proposed coarse-graining procedure are a small portion of the total costs in typical CFD-DEM simulations as long as the number of particles per cell is reasonably large, although admittedly the computational overhead of the coarse graining often exceeds that of the CFD solver. Other advantages of the present algorithm include more robust and physically realistic results, flexibility and easy implementation in almost any CFD solvers, and clear physical interpretation of the computational parameter needed in the algorithm. In summary, the diffusion-based method is a theoretically elegant and practically viable option for CFD-DEM simulations

    Liquid simulation with mesh-based surface tracking

    Get PDF
    Animating detailed liquid surfaces has always been a challenge for computer graphics researchers and visual effects artists. Over the past few years, researchers in this field have focused on mesh-based surface tracking to synthesize extremely detailed liquid surfaces as efficiently as possible. This course provides a solid understanding of the steps required to create a fluid simulator with a mesh-based liquid surface. The course begins with an overview of several existing liquid-surface-tracking techniques and the pros and cons of each method. Then it explains how to embed a triangle mesh into a finite-difference-based fluid simulator and describes several methods for allowing the liquid surface to merge together or break apart. The final section showcases the benefits and further applications of a mesh-based liquid surface, highlighting state-of-the-art methods for tracking colors and textures, maintaining liquid volume, preserving small surface features, and simulating realistic surface-tension waves

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Deformable Simplicial Complexes

    Get PDF
    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with. One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects
    corecore