169 research outputs found

    A Unified Mobility Management Architecture for Interworked Heterogeneous Mobile Networks

    Get PDF
    The buzzword of this decade has been convergence: the convergence of telecommunications, Internet, entertainment, and information technologies for the seamless provisioning of multimedia services across different network types. Thus the future Next Generation Mobile Network (NGMN) can be envisioned as a group of co-existing heterogeneous mobile data networking technologies sharing a common Internet Protocol (IP) based backbone. In such all-IP based heterogeneous networking environments, ongoing sessions from roaming users are subjected to frequent vertical handoffs across network boundaries. Therefore, ensuring uninterrupted service continuity during session handoffs requires successful mobility and session management mechanisms to be implemented in these participating access networks. Therefore, it is essential for a common interworking framework to be in place for ensuring seamless service continuity over dissimilar networks to enable a potential user to freely roam from one network to another. For the best of our knowledge, the need for a suitable unified mobility and session management framework for the NGMN has not been successfully addressed as yet. This can be seen as the primary motivation of this research. Therefore, the key objectives of this thesis can be stated as: To propose a mobility-aware novel architecture for interworking between heterogeneous mobile data networks To propose a framework for facilitating unified real-time session management (inclusive of session establishment and seamless session handoff) across these different networks. In order to achieve the above goals, an interworking architecture is designed by incorporating the IP Multimedia Subsystem (IMS) as the coupling mediator between dissipate mobile data networking technologies. Subsequently, two different mobility management frameworks are proposed and implemented over the initial interworking architectural design. The first mobility management framework is fully handled by the IMS at the Application Layer. This framework is primarily dependant on the IMS’s default session management protocol, which is the Session Initiation Protocol (SIP). The second framework is a combined method based on SIP and the Mobile IP (MIP) protocols, which is essentially operated at the Network Layer. An analytical model is derived for evaluating the proposed scheme for analyzing the network Quality of Service (QoS) metrics and measures involved in session mobility management for the proposed mobility management frameworks. More precisely, these analyzed QoS metrics include vertical handoff delay, transient packet loss, jitter, and signaling overhead/cost. The results of the QoS analysis indicates that a MIP-SIP based mobility management framework performs better than its predecessor, the Pure-SIP based mobility management method. Also, the analysis results indicate that the QoS performances for the investigated parameters are within acceptable levels for real-time VoIP conversations. An OPNET based simulation platform is also used for modeling the proposed mobility management frameworks. All simulated scenarios prove to be capable of performing successful VoIP session handoffs between dissimilar networks whilst maintaining acceptable QoS levels. Lastly, based on the findings, the contributions made by this thesis can be summarized as: The development of a novel framework for interworked heterogeneous mobile data networks in a NGMN environment. The final design conveniently enables 3G cellular technologies (such as the Universal Mobile Telecommunications Systems (UMTS) or Code Division Multiple Access 2000 (CDMA2000) type systems), Wireless Local Area Networking (WLAN) technologies, and Wireless Metropolitan Area Networking (WMAN) technologies (e.g., Broadband Wireless Access (BWA) systems such as WiMAX) to interwork under a common signaling platform. The introduction of a novel unified/centralized mobility and session management platform by exploiting the IMS as a universal coupling mediator for real-time session negotiation and management. This enables a roaming user to seamlessly handoff sessions between different heterogeneous networks. As secondary outcomes of this thesis, an analytical framework and an OPNET simulation framework are developed for analyzing vertical handoff performance. This OPNET simulation platform is suitable for commercial use

    Mobility and Handoff Management in Wireless Networks

    Get PDF
    With the increasing demands for new data and real-time services, wireless networks should support calls with different traffic characteristics and different Quality of Service (QoS)guarantees. In addition, various wireless technologies and networks exist currently that can satisfy different needs and requirements of mobile users. Since these different wireless networks act as complementary to each other in terms of their capabilities and suitability for different applications, integration of these networks will enable the mobile users to be always connected to the best available access network depending on their requirements. This integration of heterogeneous networks will, however, lead to heterogeneities in access technologies and network protocols. To meet the requirements of mobile users under this heterogeneous environment, a common infrastructure to interconnect multiple access networks will be needed. In this chapter, the design issues of a number of mobility management schemes have been presented. Each of these schemes utilizes IP-based technologies to enable efficient roaming in heterogeneous network. Efficient handoff mechanisms are essential for ensuring seamless connectivity and uninterrupted service delivery. A number of handoff schemes in a heterogeneous networking environment are also presented in this chapter.Comment: 28 pages, 11 figure

    A Seamless Vertical Handoff Protocol for Enhancing the Performance of Data Services in Integrated UMTS/WLAN Network

    Get PDF
    The Next Generation Wireless Network (NGWN) is speculated to be a unified network composed of several existing wireless access networks such as Wireless Local Area Network (WLAN), Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX), and satellite network etc

    Architecture d'interopérabilité et mécanismes de relève pour les réseaux sans fil de prochaine génération

    Get PDF
    Intégration, interopéribilité et mobilité -- An analytical framework for performance evaluation of IPV6-Based mobility management protocols -- An architecture for seamless mobility support in Ip-Based next generation wireless networks -- Adaptive handoff scheme for heterogeneous ip wireless networks -- Enhanced fast handoff scheme for heterogeneous wireless networks

    Implementation of Vertical Handoff Algorithm between IEEE802.11 WLAN and CDMA Cellular Network

    Get PDF
    Today’s wireless users expect great things from tomorrow’s wireless networks. These expectations have been fueled by hype about what the next generations of wireless networks will offer. The rapid increase of wireless subscribers increases the quality of services anytime, anywhere, and by any-media becoming indispensable. Integration of various networks such as CDMA2000 and wireless LAN into IP-based networks is required in these kinds of services, which further requires a seamless vertical handoff to 4th generation wireless networks. The proposed handoff algorithm between WLAN and CDMA2000 cellular network is implemented. The results of the simulation shows the behavior of the handoff and the time spent in WLAN or CDMA. The number of weak signal beacons determines whether a handoff is required or not. In this algorithm, traffic is classified into real-time and non real-time services

    Next generation mobile wireless hybrid network interworking architecture

    Get PDF
    It is a universally stated design requirement that next generation mobile systems will be compatible and interoperable with IPv6 and with various access technologies such as IEEE 802.11x. Discussion in the literature is currently as to whether the recently developed High Speed Packet Access (HSPA) or the developing Long Term Evaluation (LTE) technology is appropriate for the next generation mobile wireless system. However, the HSPA and the LTE technologies are not sufficient in their current form to provide ubiquitous data services. The third–generation mobile wireless network (3G) provides a highly developed global service to customers through either circuit switched or packet switched networks; new mobile multimedia services (e.g. streaming/mobile TV, location base services, downloads, multiuser games and other applications) that provide greater flexibility for the operator to introduce new services to its portfolio and from the user point of view, more services to select and a variety of higher, on-demand data rates compared with 2.5-2.75G mobile wireless system. However cellular networks suffer from a limited data rate and expensive deployment. In contrast, wireless local area networks (WLAN) are deployed widely in small areas or hotspots, because of their cost-effectiveness, ease of deployment and high data rates in an unlicensed frequency band. On the other hand, WLAN (IEEE 802.11x) cannot provide wide coverage cost-efficiently and is therefore at a disadvantage to 3G in the provision of wide coverage. In order to provide more services at high data rates in the hotspots and campus-wide areas, 3G service providers regard WLAN as a technology that compliments the 3G mobile wireless system. The recent evolution and successful deployment of WLANs worldwide has yielded demand to integrate WLANs with 3G mobile wireless technologies seamlessly. The key goal of this integration is to develop heterogeneous mobile data networks, capable of supporting ubiquitous data services with high data rates in hotspots. The effort to develop heterogeneous networks – also referred to fourth-generation (4G) mobile wireless data networks – is linked with many technical challenges including seamless vertical handovers across WLAN and 3G radio technologies, security, common authentication, unified accounting & billing, WLAN sharing (by several mobile wireless networks – different operators), consistent QoS and service provisioning, etc. This research included modelling a hybrid UMTS/WLAN network with two competent couplings: Tight Coupling and Loose Coupling. The coupling techniques were used in conjunction with EAP-AKA for authentication and Mobile IP for mobility management. The research provides an analysis of the coupling techniques and highlights the advantages and disadvantages of the coupling techniques. A large matrix of performance figures were generated for each of the coupling techniques using Opnet Modeller, a network simulation tool

    Multimedia session continuity in the IP multimedia subsystem : investigation and testbed implementation

    Get PDF
    Includes bibliographical references (leaves 91-94).The advent of Internet Protocol (IP) based rich multimedia services and applications has seen rapid growth and adoption in recent years, with an equally increasing user base. Voice over IP (VoIP) and IP Television (IPTV) are key examples of services that are blurring the lines between traditional stove-pipe approach network infrastructures. In these, each service required a different network technology to be provisioned, and could only be accessed through a specific end user equipment (UE) technology. The move towards an all-IP core network infrastructure and the proliferation of multi-capability multi-interface user devices has spurred a convergence trend characterized by access to services and applications through any network, any device and anywhere

    Optimizing Network Access Selection in Wireless Heterogeneous Networks using Velocity, Location, Policy and Qos Details

    Get PDF
    As the interest in 4G communication systems continues to grow, both academia and industry agree that a symbiotic relationship between various wireless systems is required to provide continuous broadband coverage to mobile users. It is generally accepted that a single wireless access technology alone will be incapable of meeting the various requirements of mobility, data rate and coverage in the future. Future wireless systems are envisioned as being heterogeneous in that they will include a combination of various wireless access technologies such as 3G, WLAN, and WiMAX and will have a common IP core. To fully utilize the various resources and maintain seamless connectivity in the future heterogeneous wireless environment, intelligent handoff schemes that are flexible, scalable and proactive are essential. Therefore, a new handoff decision method, one that works in a novel business model--Heterogeneous Wireless Service Provider (HWSP)--was developed with an aim to improve the mobile user's user experience. More effort was spent to achieve a good level of user satisfaction, by making the entire selection process automatic, and the user oblivious of the underlying network selection intricacies. The algorithm is able to make the final network decision, based on any particular user's speed, location, QoS demands and preference policies. This allows the algorithm to prevent unwanted handoffs and reduce the cost associated with connecting to suboptimal networks

    Vertical Handoff between 802.11 and 802.16 Wireless Access Networks

    Get PDF
    Heterogeneous wireless networks will be dominant in the next-generation wireless networks with the integration of various wireless access networks. Wireless mesh networks will become to a key technology as an economically viable solution for wide deployment of high speed, scalable and ubiquitous wireless Internet services. In this thesis, we consider an interworking architecture of wireless mesh backbone and propose an effective vertical handoff scheme between 802.11 and 802.16 wireless access networks. The proposed vertical handoff scheme aims at reducing handoff signaling overhead on the wireless backbone and providing a low handoff delay to mobile nodes. The handoff signaling procedure in different scenarios is discussed. Together with call admission control, the vertical handoff scheme directs a new call request in the 802.11 network to the 802.16 network, if the admission of the new call in the 802.11 network can degrade quality-of-service (QoS) of the existing real-time traffic flows. Simulation results demonstrate the performance of the handoff scheme with respect to signaling cost, handoff delay, and QoS support
    • …
    corecore