728 research outputs found

    Processed Radio Frequency towards Pancreas Enhancing the Deadly Diabetes Worldwide

    Get PDF
    Diabetes is a chronic and debilitating disease, which is associated with a range of complications putting tremendous burden on medical, economic and socio-technological infrastructure globally. Yet the higher authorities of health services are facing the excruciating cumulative reasons of diabetes as a very imperative worldwide issue in the 21st century. The study aims to relook at the misapplication of the processed radio frequency that frailties in the pancreas within and around the personal body boundary area. The administered sensor data were obtained at laboratory experiments from the selected specimens on dogs and cats in light and dark environments. The study shows the frequent urine flow speed varies with sudden infection due to treated wireless sensor networks in active open eyes. The overweight and obese persons are increasingly affected in diabetes with comprehensive urinary pressure due to continuous staying at dark environment. The findings replicate the increasing tide of diabetes globally. The study also represents the difficulties of physicians to provide adequate diabetic management according to their expectancy due to insecure personal area network control unit.Dynamic sensor network is indispensable for healthcare but such network is at risk to health security due to digitalized poisoning within GPS positions. The study recommends the anti-radiation integrated system policy with user’s security alternative approach to inspire dealing with National Health Policy and Sustainable Development Goals 2030

    Assessment of portable and miniaturized sensors for the monitoring of human exposure to air pollutants

    Get PDF
    In the last years, several in-field campaigns have been conducted using portable and miniaturized monitors to evaluate the personal exposure to different pollutants. In general, this kind of monitors are characterized by worse metrological performance if compared to the traditional standard methods. Despite this disadvantage, portable and miniaturized monitors could be easily used across different applications, because their advantageous features, such as the capability to provide real-time measurement, the high spatial and temporal resolution of acquired data, the ability to adapt to different experimental designs and, especially, the ability to follow the subject in any activity. Finally, portable and miniaturized instruments can provide data acquired in the respiratory zone of the subject, following therefore the practices for a correct exposure assessment. Obviously, the best compromise between the analytical gold standard (in terms of precision, accuracy and instrumental sensitivity) and the gold standard in regard to the exposure assessment should be chosen. Therefore, in brief, principal aims of this thesis are (i) to evaluate the on-field performances of portable and miniaturized monitors for gaseous pollutants and airborne PM and (ii) to use these monitors in exposure assessment studies and (iii) to understand if data acquired via portable and miniaturized monitors could be useful in other fields of application, such as epidemiological studies or toxicological studies, in which the evaluation of the inhaled dose of pollutants could play a key role

    Using novel portable air quality monitors to improve personal exposure and dose estimations for health studies

    Get PDF
    Poor air quality is a severe issue for society, affecting the health and well-being of huge parts of the population worldwide. To efficiently reduce the risk of premature death associated with air pollution, a deeper understanding of the causal links between air pollution exposure and human health is needed. However, conventional health studies are restricted by methodological limitations such as miss-estimations of personal exposure and the interdependence between different pollutant species when using traditional outdoor exposure metrics. Taking advantage of recent advancements in sensor technologies and computational techniques, this dissertation presents a novel methodological approach to improve air pollution exposure and dose estimates for epidemiological research. The novel methodology combines personal air quality monitors (PAMs) measuring nitrogen oxides (NOx), carbon monoxide (CO), ozone (O₃) and particulate matter (PM), with a time-location-activity model to generate accurate personal air pollution exposure estimations under field conditions. The monitors were comprehensively characterised and deployed in different exposure studies in the UK, China, Germany, and Kenya, supporting wider studies of air pollution and human health. The PAM measurements showed excellent agreement with standard instrumentation in indoor, outdoor, and commuting environments. Field deployments involving hundreds of participants revealed the substantial exposure misclassification introduced when using ambient measurements as metrics of exposure. The correlation between individual pollutants usually observed at air quality monitoring stations was found to substantially decrease using the high spatial resolution of the portable sensors, allowing more refined estimates of the health effects of different pollutants. The deployments showed that local emission sources had often a far more important impact on personal exposure than regional sources, and the air pollution composition changed distinctively between local microenvironments. The home environment was identified as an important exposure site, particularly in areas where populations rely on biomass burning for domestic energy and cooking. In industrialised countries, peak exposure events were recorded during commuting, although they frequently represented a minor component of the overall dose. By separating regional from local air pollution and classifying exposure by microenvironment, this work has made first steps towards assigning personal exposure to individual emission sources. The findings of this dissertation should lead to a paradigm shift in quantifying air pollution exposure in epidemiological studies and drive evidence-based policy to reduce the global burden of disease.Thanks to Jesus College Cambridge for the Sheldrick Scholarship covering tuition fees and maintenance

    SHELDON Smart habitat for the elderly.

    Get PDF
    An insightful document concerning active and assisted living under different perspectives: Furniture and habitat, ICT solutions and Healthcare
    corecore