910 research outputs found

    The improvement of uncertainty measurements accuracy in sensor networks based on fuzzy dempster-shafer theory

    Get PDF
    Threat Assessment is one of the most important components in combat management systems. However, uncertainty is one of the problems that occur in the input data of these systems that have been provided using several sensors in sensor networks. In literature, there are some theories that state and model uncertainty in the information. One of the new methods is the Fuzzy Dempster-Shafer Theory. In this paper, a model-based uncertainty is presented in the air defense system based on the Fuzzy Dempster-Shafer Theory to measure uncertainty and its accuracy. This model uses the two concepts naming of the Fuzzy Sets Theory, and the Dempster-Shafer Theory. The input parameters to sensors are fuzzy membership functions, and the basic probability assignment values are earned from the Dempster-Shafer Theory. Therefore, in this paper, the combination of two methods has been used to calculate uncertainty in the air defense system. By using these methods and the output of the Dempster-Shafer theory are calculated and presented the uncertainty diagrams. The advantage of the combination of two theories is the better modeling of uncertainties. This makes that the output of the air defense system is more reliable and accurate. In this method, the air defense system’s total uncertainty is measured using the best uncertainty measure based on the Fuzzy Dempster-Shafer Theory. The simulation results show that this new method has increased the accuracy to 97% that is more computational toward other theories. This matter significantly increases the computational accuracy of the air defense system in targets threat assessment

    A new model for threat assessment in data fusion based on fuzzy evidence theory

    Get PDF
    In this paper a new method for threat assessment is proposed based on Fuzzy Evidence Theory. The most widely classical and intelligent methods used for threat assessment systems will be Evidence or Dempster Shafer and Fuzzy Sets Theories. The disadvantage of both methods is failing to calculate of uncertainty in the data from the sensors and the poor reliability of system. To fix this flaw in the system of dynamic targets threat assessment is proposed fuzzy evidence theory as a combination of both Dempster- Shafer and Fuzzy Sets Theories. In this model, the uncertainty in input data from the sensors and the whole system is measured using the best measure of the uncertainty. Also, a comprehensive comparison is done between the uncertainty of fuzzy model and fuzzy- evidence model (proposed method). This method applied to a real time scenario for air threat assessment. The simulation results show that this method is reasonable, effective, accuracy and reliability

    Salient Feature Selection Using Feed-Forward Neural Networks and Signal-to-Noise Ratios with a Focus Toward Network Threat Detection and Risk Level identification

    Get PDF
    Most communication in the modern era takes place over some type of cyber network, to include telecommunications, banking, public utilities, and health systems. Information gained from illegitimate network access can be used to create catastrophic effects at the individual, corporate, national, and even international levels, making cyber security a top priority. Cyber networks frequently encounter amounts of network traffic too large to process real-time threat detection efficiently. Reducing the amount of information necessary for a network monitor to determine the presence of a threat would likely aide in keeping networks more secure. This thesis uses network traffic data captured during the Department of Defense Cyber Defense Exercise to determine which features of network traffic are salient to detecting and classifying threats. After generating a set of 248 features from the capture data, feed-forward artificial neural networks were generated and signal-to-noise ratios were used to prune the feature set to 18 features while still achieving an accuracy ranging from 83% - 94%. The salient features primarily come from the transport layer section of the network traffic data and involve the client/server connection parameters, size of the initial data sent, and number of segments and/or bytes sent in the flow

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Information entropy-based intention prediction of aerial targets under uncertain and incomplete information

    Get PDF
    © 2020 by authors. To improve the effectiveness of air combat decision-making systems, target intention has been extensively studied. In general, aerial target intention is composed of attack, surveillance, penetration, feint, defense, reconnaissance, cover and electronic interference and it is related to the state of a target in air combat. Predicting the target intention is helpful to know the target actions in advance. Thus, intention prediction has contributed to lay a solid foundation for air combat decision-making. In this work, an intention prediction method is developed, which combines the advantages of the long short-term memory (LSTM) networks and decision tree. The future state information of a target is predicted based on LSTM networks from real-time series data, and the decision tree technology is utilized to extract rules from uncertain and incomplete priori knowledge. Then, the target intention is obtained from the predicted data by applying the built decision tree. With a simulation example, the results show that the proposed method is effective and feasible for state prediction and intention recognition of aerial targets under uncertain and incomplete information. Furthermore, the proposed method can make contributions in providing direction and aids for subsequent attack decision-makin

    Study of Tree Base Data Mining Algorithms for Network Intrusion Detection

    Get PDF
    Internet growth has increased rapidly due to which number of network attacks have been increased. This emphasis importance of network intrusion detection systems (IDS) for securing the network. It is the process of monitoring and analyzing network traffic for detecting security violations many researcher suggested data mining technique such as classification, clustering ,pattern matching and rule induction for developing an effective intrusion detection system. In order to detect the intrusion, the network traffic can be classified into normal and anomalous. In this paper we have evaluated tree base classification algorithms namely J48, Hoeffding tree, Random Forest, Random Tree, REPTree. The comparison of these tree based classification algorithms is presented in this paper based upon their performance metrics using 10 fold cross validation and KDD- CUP test dataset. This study shows that random forest and J48 are the best suitable tree base algorithms
    • …
    corecore