15,361 research outputs found

    Persistence based analysis of consensus protocols for dynamic graph networks

    Full text link
    This article deals with the consensus problem involving agents with time-varying singularities in the dynamics or communication in undirected graph networks. Existing results provide control laws which guarantee asymptotic consensus. These results are based on the analysis of a system switching between piecewise constant and time-invariant dynamics. This work introduces a new analysis technique relying upon classical notions of persistence of excitation to study the convergence properties of the time-varying multi-agent dynamics. Since the individual edge weights pass through singularities and vary with time, the closed-loop dynamics consists of a non-autonomous linear system. Instead of simplifying to a piecewise continuous switched system as in literature, smooth variations in edge weights are allowed, albeit assuming an underlying persistence condition which characterizes sufficient inter-agent communication to reach consensus. The consensus task is converted to edge-agreement in order to study a stabilization problem to which classical persistence based results apply. The new technique allows precise computation of the rate of convergence to the consensus value.Comment: This article contains 7 pages and includes 4 figures. it is accepted in 13th European Control Conferenc

    Consensus problems in networks of agents with switching topology and time-delays

    Get PDF
    In this paper, we discuss consensus problems for networks of dynamic agents with fixed and switching topologies. We analyze three cases: 1) directed networks with fixed topology; 2) directed networks with switching topology; and 3) undirected networks with communication time-delays and fixed topology. We introduce two consensus protocols for networks with and without time-delays and provide a convergence analysis in all three cases. We establish a direct connection between the algebraic connectivity (or Fiedler eigenvalue) of the network and the performance (or negotiation speed) of a linear consensus protocol. This required the generalization of the notion of algebraic connectivity of undirected graphs to digraphs. It turns out that balanced digraphs play a key role in addressing average-consensus problems. We introduce disagreement functions for convergence analysis of consensus protocols. A disagreement function is a Lyapunov function for the disagreement network dynamics. We proposed a simple disagreement function that is a common Lyapunov function for the disagreement dynamics of a directed network with switching topology. A distinctive feature of this work is to address consensus problems for networks with directed information flow. We provide analytical tools that rely on algebraic graph theory, matrix theory, and control theory. Simulations are provided that demonstrate the effectiveness of our theoretical results

    The Fuzzy Disc

    Full text link
    We introduce a finite dimensional matrix model approximation to the algebra of functions on a disc based on noncommutative geometry. The algebra is a subalgebra of the one characterizing the noncommutative plane with a * product and depends on two parameters N and theta. It is composed of functions which decay exponentially outside a disc. In the limit in which the size of the matrices goes to infinity and the noncommutativity parameter goes to zero the disc becomes sharper. We introduce a Laplacian defined on the whole algebra and calculate its eigenvalues. We also calculate the two--points correlation function for a free massless theory (Green's function). In both cases the agreement with the exact result on the disc is very good already for relatively small matrices. This opens up the possibility for the study of field theories on the disc with nonperturbative methods. The model contains edge states, a fact studied in a similar matrix model independently introduced by Balachandran, Gupta and Kurkcuoglu.Comment: 17 pages, 8 figures, references added and correcte
    • …
    corecore