8,851 research outputs found

    BTI and leakage aware dynamic voltage scaling for reliable low power cache memories

    No full text
    We propose a novel dynamic voltage scaling (DVS)approach for reliable and energy efficient cache memories. First, we demonstrate that, as memories age, leakage power reduction techniques become more effective due to sub-threshold current reduction with aging. Then, we provide an analytical model and a design exploration framework to evaluate trade-offs between leakage power and reliability, and propose a BTI and leakage aware selection of the “drowsy” state retention voltage for DVS of cache memories. We propose three DVS policies, allowing us to achieve different power/reliability trade-offs. Through SPICE simulations, we show that a critical charge and a static noise margin increase up to 150% and 34.7%, respectively, is achieved compared to standard aging unaware drowsy technique, with a limited leakage power increase during the very early lifetime, and with leakage energy saving up to 37% in 10 years of operation. These improvements are attained at zero or negligible area cos

    Exploiting Inter- and Intra-Memory Asymmetries for Data Mapping in Hybrid Tiered-Memories

    Full text link
    Modern computing systems are embracing hybrid memory comprising of DRAM and non-volatile memory (NVM) to combine the best properties of both memory technologies, achieving low latency, high reliability, and high density. A prominent characteristic of DRAM-NVM hybrid memory is that it has NVM access latency much higher than DRAM access latency. We call this inter-memory asymmetry. We observe that parasitic components on a long bitline are a major source of high latency in both DRAM and NVM, and a significant factor contributing to high-voltage operations in NVM, which impact their reliability. We propose an architectural change, where each long bitline in DRAM and NVM is split into two segments by an isolation transistor. One segment can be accessed with lower latency and operating voltage than the other. By introducing tiers, we enable non-uniform accesses within each memory type (which we call intra-memory asymmetry), leading to performance and reliability trade-offs in DRAM-NVM hybrid memory. We extend existing NVM-DRAM OS in three ways. First, we exploit both inter- and intra-memory asymmetries to allocate and migrate memory pages between the tiers in DRAM and NVM. Second, we improve the OS's page allocation decisions by predicting the access intensity of a newly-referenced memory page in a program and placing it to a matching tier during its initial allocation. This minimizes page migrations during program execution, lowering the performance overhead. Third, we propose a solution to migrate pages between the tiers of the same memory without transferring data over the memory channel, minimizing channel occupancy and improving performance. Our overall approach, which we call MNEME, to enable and exploit asymmetries in DRAM-NVM hybrid tiered memory improves both performance and reliability for both single-core and multi-programmed workloads.Comment: 15 pages, 29 figures, accepted at ACM SIGPLAN International Symposium on Memory Managemen

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Yield-driven power-delay-optimal CMOS full-adder design complying with automotive product specifications of PVT variations and NBTI degradations

    Get PDF
    We present the detailed results of the application of mathematical optimization algorithms to transistor sizing in a full-adder cell design, to obtain the maximum expected fabrication yield. The approach takes into account all the fabrication process parameter variations specified in an industrial PDK, in addition to operating condition range and NBTI aging. The final design solutions present transistor sizing, which depart from intuitive transistor sizing criteria and show dramatic yield improvements, which have been verified by Monte Carlo SPICE analysis

    Impact of parameter variations on circuits and microarchitecture

    Get PDF
    Parameter variations, which are increasing along with advances in process technologies, affect both timing and power. Variability must be considered at both the circuit and microarchitectural design levels to keep pace with performance scaling and to keep power consumption within reasonable limits. This article presents an overview of the main sources of variability and surveys variation-tolerant circuit and microarchitectural approaches.Peer ReviewedPostprint (published version

    Power Management Techniques for Data Centers: A Survey

    Full text link
    With growing use of internet and exponential growth in amount of data to be stored and processed (known as 'big data'), the size of data centers has greatly increased. This, however, has resulted in significant increase in the power consumption of the data centers. For this reason, managing power consumption of data centers has become essential. In this paper, we highlight the need of achieving energy efficiency in data centers and survey several recent architectural techniques designed for power management of data centers. We also present a classification of these techniques based on their characteristics. This paper aims to provide insights into the techniques for improving energy efficiency of data centers and encourage the designers to invent novel solutions for managing the large power dissipation of data centers.Comment: Keywords: Data Centers, Power Management, Low-power Design, Energy Efficiency, Green Computing, DVFS, Server Consolidatio

    Design for Reliability and Low Power in Emerging Technologies

    Get PDF
    Die fortlaufende Verkleinerung von Transistor-StrukturgrĂ¶ĂŸen ist einer der wichtigsten Antreiber fĂŒr das Wachstum in der Halbleitertechnologiebranche. Seit Jahrzehnten erhöhen sich sowohl Integrationsdichte als auch KomplexitĂ€t von Schaltkreisen und zeigen damit einen fortlaufenden Trend, der sich ĂŒber alle modernen FertigungsgrĂ¶ĂŸen erstreckt. Bislang ging das Verkleinern von Transistoren mit einer Verringerung der Versorgungsspannung einher, was zu einer Reduktion der Leistungsaufnahme fĂŒhrte und damit eine gleichbleibenden Leistungsdichte sicherstellte. Doch mit dem Beginn von StrukturgrĂ¶ĂŸen im Nanometerbreich verlangsamte sich die fortlaufende Skalierung. Viele Schwierigkeiten, sowie das Erreichen von physikalischen Grenzen in der Fertigung und Nicht-IdealitĂ€ten beim Skalieren der Versorgungsspannung, fĂŒhrten zu einer Zunahme der Leistungsdichte und, damit einhergehend, zu erschwerten Problemen bei der Sicherstellung der ZuverlĂ€ssigkeit. Dazu zĂ€hlen, unter anderem, Alterungseffekte in Transistoren sowie ĂŒbermĂ€ĂŸige Hitzeentwicklung, nicht zuletzt durch stĂ€rkeres Auftreten von Selbsterhitzungseffekten innerhalb der Transistoren. Damit solche Probleme die ZuverlĂ€ssigkeit eines Schaltkreises nicht gefĂ€hrden, werden die internen Signallaufzeiten ĂŒblicherweise sehr pessimistisch kalkuliert. Durch den so entstandenen zeitlichen Sicherheitsabstand wird die korrekte FunktionalitĂ€t des Schaltkreises sichergestellt, allerdings auf Kosten der Performance. Alternativ kann die ZuverlĂ€ssigkeit des Schaltkreises auch durch andere Techniken erhöht werden, wie zum Beispiel durch Null-Temperatur-Koeffizienten oder Approximate Computing. Wenngleich diese Techniken einen Großteil des ĂŒblichen zeitlichen Sicherheitsabstandes einsparen können, bergen sie dennoch weitere Konsequenzen und Kompromisse. Bleibende Herausforderungen bei der Skalierung von CMOS Technologien fĂŒhren außerdem zu einem verstĂ€rkten Fokus auf vielversprechende Zukunftstechnologien. Ein Beispiel dafĂŒr ist der Negative Capacitance Field-Effect Transistor (NCFET), der eine beachtenswerte Leistungssteigerung gegenĂŒber herkömmlichen FinFET Transistoren aufweist und diese in Zukunft ersetzen könnte. Des Weiteren setzen Entwickler von Schaltkreisen vermehrt auf komplexe, parallele Strukturen statt auf höhere Taktfrequenzen. Diese komplexen Modelle benötigen moderne Power-Management Techniken in allen Aspekten des Designs. Mit dem Auftreten von neuartigen Transistortechnologien (wie zum Beispiel NCFET) mĂŒssen diese Power-Management Techniken neu bewertet werden, da sich AbhĂ€ngigkeiten und VerhĂ€ltnismĂ€ĂŸigkeiten Ă€ndern. Diese Arbeit prĂ€sentiert neue Herangehensweisen, sowohl zur Analyse als auch zur Modellierung der ZuverlĂ€ssigkeit von Schaltkreisen, um zuvor genannte Herausforderungen auf mehreren Designebenen anzugehen. Diese Herangehensweisen unterteilen sich in konventionelle Techniken ((a), (b), (c) und (d)) und unkonventionelle Techniken ((e) und (f)), wie folgt: (a)\textbf{(a)} Analyse von Leistungszunahmen in Zusammenhang mit der Maximierung von Leistungseffizienz beim Betrieb nahe der Transistor Schwellspannung, insbesondere am optimalen Leistungspunkt. Das genaue Ermitteln eines solchen optimalen Leistungspunkts ist eine besondere Herausforderung bei Multicore Designs, da dieser sich mit den jeweiligen Optimierungszielsetzungen und der Arbeitsbelastung verschiebt. (b)\textbf{(b)} Aufzeigen versteckter Interdependenzen zwischen Alterungseffekten bei Transistoren und Schwankungen in der Versorgungsspannung durch „IR-drops“. Eine neuartige Technik wird vorgestellt, die sowohl Über- als auch UnterschĂ€tzungen bei der Ermittlung des zeitlichen Sicherheitsabstands vermeidet und folglich den kleinsten, dennoch ausreichenden Sicherheitsabstand ermittelt. (c)\textbf{(c)} EindĂ€mmung von Alterungseffekten bei Transistoren durch „Graceful Approximation“, eine Technik zur Erhöhung der Taktfrequenz bei Bedarf. Der durch Alterungseffekte bedingte zeitlich Sicherheitsabstand wird durch Approximate Computing Techniken ersetzt. Des Weiteren wird Quantisierung verwendet um ausreichend Genauigkeit bei den Berechnungen zu gewĂ€hrleisten. (d)\textbf{(d)} EindĂ€mmung von temperaturabhĂ€ngigen Verschlechterungen der Signallaufzeit durch den Betrieb nahe des Null-Temperatur Koeffizienten (N-ZTC). Der Betrieb bei N-ZTC minimiert temperaturbedingte Abweichungen der Performance und der Leistungsaufnahme. Qualitative und quantitative Vergleiche gegenĂŒber dem traditionellen zeitlichen Sicherheitsabstand werden prĂ€sentiert. (e)\textbf{(e)} Modellierung von Power-Management Techniken fĂŒr NCFET-basierte Prozessoren. Die NCFET Technologie hat einzigartige Eigenschaften, durch die herkömmliche Verfahren zur Spannungs- und Frequenzskalierungen zur Laufzeit (DVS/DVFS) suboptimale Ergebnisse erzielen. Dies erfordert NCFET-spezifische Power-Management Techniken, die in dieser Arbeit vorgestellt werden. (f)\textbf{(f)} Vorstellung eines neuartigen heterogenen Multicore Designs in NCFET Technologie. Das Design beinhaltet identische Kerne; HeterogenitĂ€t entsteht durch die Anwendung der individuellen, optimalen Konfiguration der Kerne. Amdahls Gesetz wird erweitert, um neue system- und anwendungsspezifische Parameter abzudecken und die VorzĂŒge des neuen Designs aufzuzeigen. Die Auswertungen der vorgestellten Techniken werden mithilfe von Implementierungen und Simulationen auf Schaltkreisebene (gate-level) durchgefĂŒhrt. Des Weiteren werden Simulatoren auf Systemebene (system-level) verwendet, um Multicore Designs zu implementieren und zu simulieren. Zur Validierung und Bewertung der EffektivitĂ€t gegenĂŒber dem Stand der Technik werden analytische, gate-level und system-level Simulationen herangezogen, die sowohl synthetische als auch reale Anwendungen betrachten
    • 

    corecore