51,890 research outputs found

    Age Differences in Intra-Individual Variability in Simple and Choice Reaction Time: Systematic Review and Meta-Analysis

    Get PDF
    Intra-individual variability in reaction time (RT IIV) is considered to be an index of central nervous system functioning. Such variability is elevated in neurodegenerative diseases or following traumatic brain injury. It has also been suggested to increase with age in healthy ageing.To investigate and quantify age differences in RT IIV in healthy ageing; to examine the effect of different tasks and procedures; to compare raw and mean-adjusted measures of RT IIV.Four electronic databases: PsycINFO, Medline, Web of Science and EMBASE, and hand searching of reference lists of relevant studies.English language journal articles, books or book chapters, containing quantitative empirical data on simple and/or choice RT IIV. Samples had to include younger (under 60 years) and older (60 years and above) human adults.Studies were evaluated in terms of sample representativeness and data treatment. Relevant data were extracted, using a specially-designed form, from the published report or obtained directly from the study authors. Age-group differences in raw and RT-mean-adjusted measures of simple and choice RT IIV were quantified using random effects meta-analyses.Older adults (60+ years) had greater RT IIV than younger (20-39) and middle-aged (40-59) adults. Age effects were larger in choice RT tasks than in simple RT tasks. For all measures of RT IIV, effect sizes were larger for the comparisons between older and younger adults than between older and middle-aged adults, indicating that the age-related increases in RT IIV are not limited to old age. Effect sizes were also larger for raw than for RT-mean-adjusted RT IIV measures.RT IIV is greater among older adults. Some (but not all) of the age-related increases in RT IIV are accounted for by the increased RT means

    The interaction of process and domain in prefrontal cortex during inductive reasoning

    Get PDF
    AbstractInductive reasoning is an everyday process that allows us to make sense of the world by creating rules from a series of instances. Consistent with accounts of process-based fractionations of the prefrontal cortex (PFC) along the left–right axis, inductive reasoning has been reliably localized to left PFC. However, these results may be confounded by the task domain, which is typically verbal. Indeed, some studies show that right PFC activation is seen with spatial tasks. This study used fMRI to examine the effects of process and domain on the brain regions recruited during a novel pattern discovery task. Twenty healthy young adult participants were asked to discover the rule underlying the presentation of a series of letters in varied spatial locations. The rules were either verbal (pertaining to a single semantic category) or spatial (geometric figures). Bilateral ventrolateral PFC activations were seen for the spatial domain, while the verbal domain showed only left ventrolateral PFC. A conjunction analysis revealed that the two domains recruited a common region of left ventrolateral PFC. The data support a central role of left PFC in inductive reasoning. Importantly, they also suggest that both process and domain shape the localization of reasoning in the brain

    Cultural differences in complex addition: efficient Chinese versus adaptive Belgians and Canadians

    Get PDF
    In the present study, the authors tested the effects of working-memory load on math problem solving in 3 different cultures: Flemish-speaking Belgians, English-speaking Canadians, and Chinese-speaking Chinese currently living in Canada. Participants solved complex addition problems (e.g., 58 + 76) in no-load and working-memory load conditions, in which either the central executive or the phonological loop was loaded. The authors used the choice/no-choice method to obtain unbiased measures of strategy selection and strategy efficiency. The Chinese participants were faster than the Belgians, who were faster and more accurate than the Canadians. The Chinese also required fewer working-memory resources than did the Belgians and Canadians. However, the Chinese chose less adaptively from the available strategies than did the Belgians and Canadians. These cultural differences in math problem solving are likely the result of different instructional approaches during elementary school (practice and training in Asian countries vs. exploration and flexibility in non-Asian countries), differences in the number language, and informal cultural norms and standards. The relevance of being adaptive is discussed as well as the implications of the results in regards to the strategy choice and discovery simulation model of strategy selection (J. Shrager & R. S. Siegler, 1998)

    When awareness gets in the way : reactivation aversion effects resolve the generality/specificity paradox in sensorimotor interference tasks

    Get PDF
    Interference tasks combining different distractor types usually find that between-trial adaptations (congruency sequence effects [CSEs]) do not interact with each other, suggesting that sensorimotor control is domain-specific. However, within each trial, different distractor types often do interact, suggesting that control is domain-general. The present study presents a solution to this apparent paradox. In 3 experiments, testing 130 participants in total, we (a) confirm the simultaneous presence of between-trial domain-specific (noninteracting) CSEs and within-trial “domain-general” interactions in a fully factorial hybrid prime-Simon design free of repetition or contingency confounds; (b) demonstrate that the within-trial interaction occurs with supraliminal, but not with subliminal primes; and (c) show that it is disproportionately enlarged in older adults. Our findings suggest that whereas interference (priming and Simon) effects and CSEs reflect direct sensorimotor control, the within-trial interaction does not reflect sensorimotor control but “confusion” at higher-level processing stages (reactivation aversion effect [RAE])

    Age-related delay in information accrual for faces: Evidence from a parametric, single-trial EEG approach

    Get PDF
    Background: In this study, we quantified age-related changes in the time-course of face processing by means of an innovative single-trial ERP approach. Unlike analyses used in previous studies, our approach does not rely on peak measurements and can provide a more sensitive measure of processing delays. Young and old adults (mean ages 22 and 70 years) performed a non-speeded discrimination task between two faces. The phase spectrum of these faces was manipulated parametrically to create pictures that ranged between pure noise (0% phase information) and the undistorted signal (100% phase information), with five intermediate steps. Results: Behavioural 75% correct thresholds were on average lower, and maximum accuracy was higher, in younger than older observers. ERPs from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The earliest age-related ERP differences occurred in the time window of the N170. Older observers had a significantly stronger N170 in response to noise, but this age difference decreased with increasing phase information. Overall, manipulating image phase information had a greater effect on ERPs from younger observers, which was quantified using a hierarchical modelling approach. Importantly, visual activity was modulated by the same stimulus parameters in younger and older subjects. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed a significantly slower processing in older observers starting around 120 ms after stimulus onset. This age-related delay increased over time to reach a maximum around 190 ms, at which latency younger observers had around 50 ms time lead over older observers. Conclusion: Using a component-free ERP analysis that provides a precise timing of the visual system sensitivity to image structure, the current study demonstrates that older observers accumulate face information more slowly than younger subjects. Additionally, the N170 appears to be less face-sensitive in older observers

    Does opportunistic testing bias cognitive performance in primates? Learning from drop-outs

    Get PDF
    Dropouts are a common issue in cognitive tests with non-human primates. One main reason for dropouts is that researchers often face a trade-off between obtaining a sufficiently large sample size and logistic restrictions, such as limited access to testing facilities. The commonly-used opportunistic testing approach deals with this trade-off by only testing those individuals who readily participate and complete the cognitive tasks within a given time frame. All other individuals are excluded from further testing and data analysis. However, it is unknown if this approach merely excludes subjects who are not consistently motivated to participate, or if these dropouts systematically differ in cognitive ability. If the latter holds, the selection bias resulting from opportunistic testing would systematically affect performance scores and thus comparisons between individuals and species. We assessed the potential effects of opportunistic testing on cognitive performance in common marmosets (Callithrix jacchus) and squirrel monkeys (Saimiri sciureus) with a test battery consisting of six cognitive tests: two inhibition tasks (Detour Reaching and A-not-B), one cognitive flexibility task (Reversal Learning), one quantity discrimination task, and two memory tasks. Importantly, we used a full testing approach in which subjects were given as much time as they required to complete each task. For each task, we then compared the performance of subjects who completed the task within the expected number of testing days with those subjects who needed more testing time. We found that the two groups did not differ in task performance, and therefore opportunistic testing would have been justified without risking biased results. If our findings generalise to other species, maximising sample sizes by only testing consistently motivated subjects will be a valid alternative whenever full testing is not feasible.</p

    Decline and fall:a biological, developmental, and psycholinguistic account of deliberative language processes and ageing

    Get PDF
    Background: This paper reviews the role of deliberative processes in language: those language processes that require central resources, in contrast to the automatic processes of lexicalisation, word retrieval, and parsing. 10 Aims: We describe types of deliberative processing, and show how these processes underpin high-level processes that feature strongly in language. We focus on metalin- guistic processing, strategic processing, inhibition, and planning. We relate them to frontal-lobe function and the development of the fronto-striate loop. We then focus on the role of deliberative processes in normal and pathological development and ageing, 15 and show how these processes are particularly susceptible to deterioration with age. In particular, many of the commonly observed language impairments encountered in ageing result from a decline in deliberative processing skills rather than in automatic language processes. Main Contribution: We argue that central processing plays a larger and more important 20 role in language processing and acquisition than is often credited. Conclusions: Deliberative language processes permeate language use across the lifespan. They are particularly prone to age-related loss. We conclude by discussing implications for therapy

    Gender and sexual orientation differences in cognition across adulthood : age is kinder to women than to men regardless of sexual orientation

    Get PDF
    Despite some evidence of greater age-related deterioration of the brain in males than in females, gender differences in rates of cognitive aging have proved inconsistent. The present study employed web-based methodology to collect data from people aged 20-65 years (109,612 men; 88,509 women). As expected, men outperformed women on tests of mental rotation and line angle judgment, whereas women outperformed men on tests of category fluency and object location memory. Performance on all tests declined with age but significantly more so for men than for women. Heterosexuals of each gender generally outperformed bisexuals and homosexuals on tests where that gender was superior; however, there were no clear interactions between age and sexual orientation for either gender. At least for these particular tests from young adulthood to retirement, age is kinder to women than to men, but treats heterosexuals, bisexuals, and homosexuals just the same

    Cognitive tests used in chronic adult human randomised controlled trial micronutrient and phytochemical intervention studies

    Get PDF
    In recent years there has been a rapid growth of interest in exploring the relationship between nutritional therapies and the maintenance of cognitive function in adulthood. Emerging evidence reveals an increasingly complex picture with respect to the benefits of various food constituents on learning, memory and psychomotor function in adults. However, to date, there has been little consensus in human studies on the range of cognitive domains to be tested or the particular tests to be employed. To illustrate the potential difficulties that this poses, we conducted a systematic review of existing human adult randomised controlled trial (RCT) studies that have investigated the effects of 24 d to 36 months of supplementation with flavonoids and micronutrients on cognitive performance. There were thirty-nine studies employing a total of 121 different cognitive tasks that met the criteria for inclusion. Results showed that less than half of these studies reported positive effects of treatment, with some important cognitive domains either under-represented or not explored at all. Although there was some evidence of sensitivity to nutritional supplementation in a number of domains (for example, executive function, spatial working memory), interpretation is currently difficult given the prevailing 'scattergun approach' for selecting cognitive tests. Specifically, the practice means that it is often difficult to distinguish between a boundary condition for a particular nutrient and a lack of task sensitivity. We argue that for significant future progress to be made, researchers need to pay much closer attention to existing human RCT and animal data, as well as to more basic issues surrounding task sensitivity, statistical power and type I error
    corecore