57 research outputs found

    Aeronautical engineering: A continuing bibliography with indexes (supplement 272)

    Get PDF
    This bibliography lists 719 reports, articles, and other documents introduced into the NASA scientific and technical information system in November, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment, and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Sensors, measurement fusion and missile trajectory optimisation

    Get PDF
    When considering advances in “smart” weapons it is clear that air-launched systems have adopted an integrated approach to meet rigorous requirements, whereas air-defence systems have not. The demands on sensors, state observation, missile guidance, and simulation for air-defence is the subject of this research. Historical reviews for each topic, justification of favoured techniques and algorithms are provided, using a nomenclature developed to unify these disciplines. Sensors selected for their enduring impact on future systems are described and simulation models provided. Complex internal systems are reduced to simpler models capable of replicating dominant features, particularly those that adversely effect state observers. Of the state observer architectures considered, a distributed system comprising ground based target and own-missile tracking, data up-link, and on-board missile measurement and track fusion is the natural choice for air-defence. An IMM is used to process radar measurements, combining the estimates from filters with different target dynamics. The remote missile state observer combines up-linked target tracks and missile plots with IMU and seeker data to provide optimal guidance information. The performance of traditional PN and CLOS missile guidance is the basis against which on-line trajectory optimisation is judged. Enhanced guidance laws are presented that demand more from the state observers, stressing the importance of time-to-go and transport delays in strap-down systems employing staring array technology. Algorithms for solving the guidance twopoint boundary value problems created from the missile state observer output using gradient projection in function space are presented. A simulation integrating these aspects was developed whose infrastructure, capable of supporting any dynamical model, is described in the air-defence context. MBDA have extended this work creating the Aircraft and Missile Integration Simulation (AMIS) for integrating different launchers and missiles. The maturity of the AMIS makes it a tool for developing pre-launch algorithms for modern air-launched missiles from modern military aircraft.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Nonlinear robust H∞ control.

    Get PDF
    A new theory is proposed for the full-information finite and infinite horizontime robust H∞ control that is equivalently effective for the regulation and/or tracking problems of the general class of time-varying nonlinear systems under the presence of exogenous disturbance inputs. The theory employs the sequence of linear-quadratic and time-varying approximations, that were recently introduced in the optimal control framework, to transform the nonlinear H∞ control problem into a sequence of linearquadratic robust H∞ control problems by using well-known results from the existing Riccati-based theory of the maturing classical linear robust control. The proposed method, as in the optimal control case, requires solving an approximating sequence of Riccati equations (ASRE), to find linear time-varying feedback controllers for such disturbed nonlinear systems while employing classical methods. Under very mild conditions of local Lipschitz continuity, these iterative sequences of solutions are known to converge to the unique viscosity solution of the Hamilton-lacobi-Bellman partial differential equation of the original nonlinear optimal control problem in the weak form (Cimen, 2003); and should hold for the robust control problems herein. The theory is analytically illustrated by directly applying it to some sophisticated nonlinear dynamical models of practical real-world applications. Under a r -iteration sense, such a theory gives the control engineer and designer more transparent control requirements to be incorporated a priori to fine-tune between robustness and optimality needs. It is believed, however, that the automatic state-regulation robust ASRE feedback control systems and techniques provided in this thesis yield very effective control actions in theory, in view of its computational simplicity and its validation by means of classical numerical techniques, and can straightforwardly be implemented in practice as the feedback controller is constrained to be linear with respect to its inputs

    Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms

    Get PDF
    This book is a reprint of the Special Issue “Intelligent Autonomous Decision-Making and Cooperative Control Technology of High-Speed Vehicle Swarms”,which was published in Applied Sciences

    Aeronautical engineering: A continuing bibliography with indexes, supplement 146, March 1982

    Get PDF
    This bibliography lists 442 reports, articles, and other documents introduced into the NASA scientific and technical system in February 1982

    Aeronautical Engineering: A cumulative index to the 1984 issues of the continuing bibliography

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA SP-7037(171) through NASA SP-7037(182) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Aeronautical engineering: A continuing bibliography with indexes (supplement 204)

    Get PDF
    This bibliography lists 419 reports, articles, and other documents introduced into the NASA scientific and technical information system in August 1986

    NASA Aircraft Controls Research, 1983

    Get PDF
    The workshop consisted of 24 technical presentations on various aspects of aircraft controls, ranging from the theoretical development of control laws to the evaluation of new controls technology in flight test vehicles. A special report on the status of foreign aircraft technology and a panel session with seven representatives from organizations which use aircraft controls technology were also included. The controls research needs and opportunities for the future as well as the role envisioned for NASA in that research were addressed. Input from the panel and response to the workshop presentations will be used by NASA in developing future programs

    Approximate dynamic programming based solutions for fixed-final-time optimal control and optimal switching

    Get PDF
    Optimal solutions with neural networks (NN) based on an approximate dynamic programming (ADP) framework for new classes of engineering and non-engineering problems and associated difficulties and challenges are investigated in this dissertation. In the enclosed eight papers, the ADP framework is utilized for solving fixed-final-time problems (also called terminal control problems) and problems with switching nature. An ADP based algorithm is proposed in Paper 1 for solving fixed-final-time problems with soft terminal constraint, in which, a single neural network with a single set of weights is utilized. Paper 2 investigates fixed-final-time problems with hard terminal constraints. The optimality analysis of the ADP based algorithm for fixed-final-time problems is the subject of Paper 3, in which, it is shown that the proposed algorithm leads to the global optimal solution providing certain conditions hold. Afterwards, the developments in Papers 1 to 3 are used to tackle a more challenging class of problems, namely, optimal control of switching systems. This class of problems is divided into problems with fixed mode sequence (Papers 4 and 5) and problems with free mode sequence (Papers 6 and 7). Each of these two classes is further divided into problems with autonomous subsystems (Papers 4 and 6) and problems with controlled subsystems (Papers 5 and 7). Different ADP-based algorithms are developed and proofs of convergence of the proposed iterative algorithms are presented. Moreover, an extension to the developments is provided for online learning of the optimal switching solution for problems with modeling uncertainty in Paper 8. Each of the theoretical developments is numerically analyzed using different real-world or benchmark problems --Abstract, page v
    corecore