34,387 research outputs found

    Models of Manipulation on Aggregation of Binary Evaluations

    Full text link
    We study a general aggregation problem in which a society has to determine its position on each of several issues, based on the positions of the members of the society on those issues. There is a prescribed set of feasible evaluations, i.e., permissible combinations of positions on the issues. Among other things, this framework admits the modeling of preference aggregation, judgment aggregation, classification, clustering and facility location. An important notion in aggregation of evaluations is strategy-proofness. In the general framework we discuss here, several definitions of strategy-proofness may be considered. We present here 3 natural \textit{general} definitions of strategy-proofness and analyze the possibility of designing an annonymous, strategy-proof aggregation rule under these definitions

    On the Computational Complexity of Non-dictatorial Aggregation

    Full text link
    We investigate when non-dictatorial aggregation is possible from an algorithmic perspective, where non-dictatorial aggregation means that the votes cast by the members of a society can be aggregated in such a way that the collective outcome is not simply the choices made by a single member of the society. We consider the setting in which the members of a society take a position on a fixed collection of issues, where for each issue several different alternatives are possible, but the combination of choices must belong to a given set XX of allowable voting patterns. Such a set XX is called a possibility domain if there is an aggregator that is non-dictatorial, operates separately on each issue, and returns values among those cast by the society on each issue. We design a polynomial-time algorithm that decides, given a set XX of voting patterns, whether or not XX is a possibility domain. Furthermore, if XX is a possibility domain, then the algorithm constructs in polynomial time such a non-dictatorial aggregator for XX. We then show that the question of whether a Boolean domain XX is a possibility domain is in NLOGSPACE. We also design a polynomial-time algorithm that decides whether XX is a uniform possibility domain, that is, whether XX admits an aggregator that is non-dictatorial even when restricted to any two positions for each issue. As in the case of possibility domains, the algorithm also constructs in polynomial time a uniform non-dictatorial aggregator, if one exists. Then, we turn our attention to the case where XX is given implicitly, either as the set of assignments satisfying a propositional formula, or as a set of consistent evaluations of an sequence of propositional formulas. In both cases, we provide bounds to the complexity of deciding if XX is a (uniform) possibility domain.Comment: 21 page

    Aggregation of Votes with Multiple Positions on Each Issue

    Full text link
    We consider the problem of aggregating votes cast by a society on a fixed set of issues, where each member of the society may vote for one of several positions on each issue, but the combination of votes on the various issues is restricted to a set of feasible voting patterns. We require the aggregation to be supportive, i.e. for every issue jj the corresponding component fjf_j of every aggregator on every issue should satisfy fj(x1,,…,xn)∈{x1,,…,xn}f_j(x_1, ,\ldots, x_n) \in \{x_1, ,\ldots, x_n\}. We prove that, in such a set-up, non-dictatorial aggregation of votes in a society of some size is possible if and only if either non-dictatorial aggregation is possible in a society of only two members or a ternary aggregator exists that either on every issue jj is a majority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=x,∀x,yf_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =x, \forall x,y, or on every issue is a minority operation, i.e. the corresponding component satisfies fj(x,x,y)=fj(x,y,x)=fj(y,x,x)=y,∀x,y.f_j(x,x,y) = f_j(x,y,x) = f_j(y,x,x) =y, \forall x,y. We then introduce a notion of uniformly non-dictatorial aggregator, which is defined to be an aggregator that on every issue, and when restricted to an arbitrary two-element subset of the votes for that issue, differs from all projection functions. We first give a characterization of sets of feasible voting patterns that admit a uniformly non-dictatorial aggregator. Then making use of Bulatov's dichotomy theorem for conservative constraint satisfaction problems, we connect social choice theory with combinatorial complexity by proving that if a set of feasible voting patterns XX has a uniformly non-dictatorial aggregator of some arity then the multi-sorted conservative constraint satisfaction problem on XX, in the sense introduced by Bulatov and Jeavons, with each issue representing a sort, is tractable; otherwise it is NP-complete

    DISTANCE MEASURES IN AGGREGATING PREFERENCE DATA

    Get PDF
    The aim of this paper is to present aggregation methods of individual preferences scores by means of distance measures. Three groups of distance measures are discussed: measures  which use preference distributions for all pairs of objects (e.g. Kemeny’s measure, Bogart’s measure), distance measures based on ranking data (e.g. Spearman distance, Podani distance) and distance measures using permissible transformations to ordinal scale (GDM2 distance). Adequate distance formulas are presented and the aggregation of individual preference by using separate distance measures was carried out with the use of the R program

    Utilitarian Collective Choice and Voting

    Get PDF
    In his seminal Social Choice and Individual Values, Kenneth Arrow stated that his theory applies to voting. Many voting theorists have been convinced that, on account of Arrow’s theorem, all voting methods must be seriously flawed. Arrow’s theory is strictly ordinal, the cardinal aggregation of preferences being explicitly rejected. In this paper I point out that all voting methods are cardinal and therefore outside the reach of Arrow’s result. Parallel to Arrow’s ordinal approach, there evolved a consistent cardinal theory of collective choice. This theory, most prominently associated with the work of Harsanyi, continued the older utilitarian tradition in a more formal style. The purpose of this paper is to show that various derivations of utilitarian SWFs can also be used to derive utilitarian voting (UV). By this I mean a voting rule that allows the voter to score each alternative in accordance with a given scale. UV-k indicates a scale with k distinct values. The general theory leaves k to be determined on pragmatic grounds. A (1,0) scale gives approval voting. I prefer the scale (1,0,-1) and refer to the resulting voting rule as evaluative voting. A conclusion of the paper is that the defects of conventional voting methods result not from Arrow’s theorem, but rather from restrictions imposed on voters’ expression of their preferences. The analysis is extended to strategic voting, utilizing a novel set of assumptions regarding voter behavior

    DMA:an algebra for multicriteria spatial modeling

    Get PDF

    Antipodality in committee selection

    Get PDF
    In this paper we compare a minisum and a minimax procedure as suggested by Brams et al. for selecting committees from a set of candidates. Using a general geometric framework as developed by Don Saari for preference aggregation, we show that antipodality of a unique maximin and a unique minisum winner can occur for any number of candidates larger than two.

    Bipolar and bivariate models in multi-criteria decision analysis: descriptive and constructive approaches

    Get PDF
    Multi-criteria decision analysis studies decision problems in which the alternatives are evaluated on several dimensions or viewpoints. In the problems we consider in this paper, the scales used for assessing the alternatives with respect to a viewpoint are bipolar and univariate or unipolar and bivariate. In the former case, the scale is divided in two zones by a neutral point; a positive feeling is associated to the zone above the neutral point and a negative feeling to the zone below this point. On unipolar bivariate scales, an alternative can receive both a positive and a negative evaluation, reflecting contradictory feelings or stimuli. The paper discusses procedures and models that have been proposed to aggregate multi-criteria evaluations when the scale of each criterion is of one of the two types above. We present both a constructive and a descriptive view on this question; the descriptive approach is concerned with characterizations of models of preference, while the constructive approach aims at building preferences by questioning the decision maker. We show that these views are complementary.Multiple criteria, Decision analysis, Preference, Bipolarmodels, Choquet integral
    • …
    corecore