287 research outputs found

    Application of uninorms to market basket analysis

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The ability for grocery retailers to have a single view of customers across all their grocery purchases remains elusive and has become increasingly important in recent years (especially in the UK) where competition has intensified, shopping habits and demographics have changed and price sensitivity has increased following the 2008 recession. Numerous studies have been conducted on understanding independent items that are frequently bought together (association rule mining/ frequent itemsets) with several measures proposed to aggregate item support and rule confidence with varying levels of accuracy as these measures are highly context dependent. Uninorms were used as an alternative measure to aggregate support and confidence in analysing market basket data using the UK grocery retail sector as a case study. Experiments were conducted on consumer panel data with the aim of comparing the uninorm against three other popular measures (Jaccard, Cosine and Conviction). It was found that the uninorm outperformed other models on its adherence to the fundamental monotonicity property of support in market basket analysis. Future work will include the extension of this analysis to provide a generalised model for market basket analysis

    Semantically-guided evolutionary knowledge discovery from texts

    Get PDF
    This thesis proposes a new approach for structured knowledge discovery from texts which considers both the mining process itself, the evaluation of this knowledge by the model, and the human assessment of the quality of the outcome.This is achieved by integrating Natural-Language technology and Genetic Algorithms to produce explanatory novel hypotheses. Natural-Language techniques are specifically used to extract genre-based information from text documents. Additional semantic and rhetorical information for generating training data and for feeding a semistructured Latent Semantic Analysis process is also captured.The discovery process is modeled by a semantically-guided Genetic Algorithm which uses training data to guide the search and optimization process. A number of novel criteria to evaluate the quality of the new knowledge are proposed. Consequently, new genetic operations suitable for text mining are designed, and techniques for Evolutionary Multi-Objective Optimization are adapted for the model to trade off between different criteria in the hypotheses.Domain experts were used in an experiment to assess the quality of the hypotheses produced by the model so as to establish their effectiveness in terms of novel and interesting knowledge. The assessment showed encouraging results for the discovered knowledge and for the correlation between the model and the human opinions

    Multivariate discretization of continuous valued attributes.

    Get PDF
    The area of Knowledge discovery and data mining is growing rapidly. Feature Discretization is a crucial issue in Knowledge Discovery in Databases (KDD), or Data Mining because most data sets used in real world applications have features with continuously values. Discretization is performed as a preprocessing step of the data mining to make data mining techniques useful for these data sets. This thesis addresses discretization issue by proposing a multivariate discretization (MVD) algorithm. It begins withal number of common discretization algorithms like Equal width discretization, Equal frequency discretization, NaĂŻve; Entropy based discretization, Chi square discretization, and orthogonal hyper planes. After that comparing the results achieved by the multivariate discretization (MVD) algorithm with the accuracy results of other algorithms. This thesis is divided into six chapters, covering a few common discretization algorithms and tests these algorithms on a real world datasets which varying in size and complexity, and shows how data visualization techniques will be effective in determining the degree of complexity of the given data set. We have examined the multivariate discretization (MVD) algorithm with the same data sets. After that we have classified discrete data using artificial neural network single layer perceptron and multilayer perceptron with back propagation algorithm. We have trained the Classifier using the training data set, and tested its accuracy using the testing data set. Our experiments lead to better accuracy results with some data sets and low accuracy results with other data sets, and this is subject ot the degree of data complexity then we have compared the accuracy results of multivariate discretization (MVD) algorithm with the results achieved by other discretization algorithms. We have found that multivariate discretization (MVD) algorithm produces good accuracy results in comparing with the other discretization algorithm

    MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems

    Get PDF
    Many algorithms have emerged to address the discovery of quantitative association rules from datasets in the last years. However, this task is becoming a challenge because the processing power of most existing techniques is not enough to handle the large amount of data generated nowadays. These vast amounts of data are known as Big Data. A number of previous studies have been focused on mining boolean or nominal association rules from Big Data problems, nevertheless, the data in real-world applications usually consist of quantitative values and designing data mining algorithms able to extract quantitative association rules presents a challenge to workers in this research field. In spite of the fact that we can find classical methods to discover boolean or nominal association rules in the most well-known repositories of Big Data algorithms, such repositories do not provide methods to discover quantitative association rules. Indeed, no methodologies have been proposed in the literature without prior discretization in Big Data. Hence, this work proposes MRQAR, a new generic parallel framework to discover quantitative association rules in large amounts of data, designed following the MapReduce paradigm using Apache Spark. MRQAR performs an incremental learning able to run any sequential quantitative association rule algorithm in Big Data problems without needing to redesign such algorithms. As a case study, we have integrated the multiobjective evolutionary algorithm MOPNAR into MRQAR to validate the generic MapReduce framework proposed in this work. The results obtained in the experimental study performed on five Big Data problems prove the capability of MRQAR to obtain reduced set of high quality rules in reasonable time.Ministerio de EconomĂ­a y Competitividad TIN2017-89517-PMinisterio de EconomĂ­a y Competitividad TIN2014-55894-C2-1-RMinisterio de EconomĂ­a y Competitividad TIN2017-88209-C2-2-

    Mining subjectively interesting patterns in rich data

    Get PDF

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings

    Association Pattern Analysis for Pattern Pruning, Clustering and Summarization

    Get PDF
    Automatic pattern mining from databases and the analysis of the discovered patterns for useful information are important and in great demand in science, engineering and business. Today, effective pattern mining methods, such as association rule mining and pattern discovery, have been developed and widely used in various challenging industrial and business applications. These methods attempt to uncover the valuable information trapped in large collections of raw data. The patterns revealed provide significant and useful information for decision makers. Paradoxically, pattern mining itself can produce such huge amounts of data that poses a new knowledge management problem: to tackle thousands or even more patterns discovered and held in a data set. Unlike raw data, patterns often overlap, entangle and interrelate to each other in the databases. The relationship among them is usually complex and the notion of distance between them is difficult to qualify and quantify. Such phenomena pose great challenges to the existing data mining discipline. In this thesis, the analysis of patterns after their discovery by existing pattern mining methods is referred to as pattern post-analysis since the patterns to be analyzed are first discovered. Due to the overwhelmingly huge volume of discovered patterns in pattern mining, it is virtually impossible for a human user to manually analyze them. Thus, the valuable trapped information in the data is shifted to a large collection of patterns. Hence, to automatically analyze the patterns discovered and present the results in a user-friendly manner such as pattern post-analysis is badly needed. This thesis attempts to solve the problems listed below. It addresses 1) the important factors contributing to the interrelating relationship among patterns and hence more accurate measurements of distances between them; 2) the objective pruning of redundant patterns from the discovered patterns; 3) the objective clustering of the patterns into coherent pattern clusters for better organization; 4) the automatic summarization of each pattern cluster for human interpretation; and 5) the application of pattern post-analysis to large database analysis and data mining. In this thesis, the conceptualization, theoretical formulation, algorithm design and system development of pattern post-analysis of categorical or discrete-valued data is presented. It starts with presenting a natural dual relationship between patterns and data. The relationship furnishes an explicit one-to-one correspondence between a pattern and its associated data and provides a base for an effective analysis of patterns by relating them back to the data. It then discusses the important factors that differentiate patterns and formulates the notion of distances among patterns using a formal graphical approach. To accurately measure the distances between patterns and their associated data, both the samples and the attributes matched by the patterns are considered. To achieve this, the distance measure between patterns has to account for the differences of their associated data clusters at the attribute value (i.e. item) level. Furthermore, to capture the degree of variation of the items matched by patterns, entropy-based distance measures are developed. It attempts to quantify the uncertainty of the matched items. Such distances render an accurate and robust distance measurement between patterns and their associated data. To understand the properties and behaviors of the new distance measures, the mathematical relation between the new distances and the existing sample-matching distances is analytically derived. The new pattern distances based on the dual pattern-data relationship and their related concepts are used and adapted to pattern pruning, pattern clustering and pattern summarization to furnish an integrated, flexible and generic framework for pattern post-analysis which is able to meet the challenges of today’s complex real-world problems. In pattern pruning, the system defines the amount of redundancy of a pattern with respect to another pattern at the item level. Such definition generalizes the classical closed itemset pruning and maximal itemset pruning which define redundancy at the sample level. A new generalized itemset pruning method is developed using the new definition. It includes the closed and maximal itemsets as two extreme special cases and provides a control parameter for the user to adjust the tradeoff between the number of patterns being pruned and the amount of information loss after pruning. The mathematical relation between the proposed generalized itemsets and the existing closed and maximal itemsets are also given. In pattern clustering, a dual clustering method, known as simultaneous pattern and data clustering, is developed using two common yet very different types of clustering algorithms: hierarchical clustering and k-means clustering. Hierarchical clustering generates the entire clustering hierarchy but it is slow and not scalable. K-means clustering produces only a partition so it is fast and scalable. They can be used to handle most real-world situations (i.e. speed and clustering quality). The new clustering method is able to simultaneously cluster patterns as well as their associated data while maintaining an explicit pattern-data relationship. Such relationship enables subsequent analysis of individual pattern clusters through their associated data clusters. One important analysis on a pattern cluster is pattern summarization. In pattern summarization, to summarize each pattern cluster, a subset of the representative patterns will be selected for the cluster. Again, the system measures how representative a pattern is at the item level and takes into account how the patterns overlap each other. The proposed method, called AreaCover, is extended from the well-known RuleCover algorithm. The relationship between the two methods is given. AreaCover is less prone to yield large, trivial patterns (large patterns may cause summary that is too general and not informative enough), and the resulting summary is more concise (with less duplicated attribute values among summary patterns) and more informative (describing more attribute values in the cluster and have longer summary patterns). The thesis also covers the implementation of the major ideas outlined in the pattern post-analysis framework in an integrated software system. It ends with a discussion on the experimental results of pattern post-analysis on both synthetic and real-world benchmark data. Compared with the existing systems, the new methodology that this thesis presents stands out, possessing significant and superior characteristics in pattern post-analysis and decision support

    Generalised Interaction Mining: Probabilistic, Statistical and Vectorised Methods in High Dimensional or Uncertain Databases

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, useful and ultimately understandable patterns in data. The core step of the KDD process is the application of Data Mining (DM) algorithms to efficiently find interesting patterns in large databases. This thesis concerns itself with three inter-related themes: Generalised interaction and rule mining; the incorporation of statistics into novel data mining approaches; and probabilistic frequent pattern mining in uncertain databases. An interaction describes an effect that variables have -- or appear to have -- on each other. Interaction mining is the process of mining structures on variables describing their interaction patterns -- usually represented as sets, graphs or rules. Interactions may be complex, represent both positive and negative relationships, and the presence of interactions can influence another interaction or variable in interesting ways. Finding interactions is useful in domains ranging from social network analysis, marketing, the sciences, e-commerce, to statistics and finance. Many data mining tasks may be considered as mining interactions, such as clustering; frequent itemset mining; association rule mining; classification rules; graph mining; flock mining; etc. Interaction mining problems can have very different semantics, pattern definitions, interestingness measures and data types. Solving a wide range of interaction mining problems at the abstract level, and doing so efficiently -- ideally more efficiently than with specialised approaches, is a challenging problem. This thesis introduces and solves the Generalised Interaction Mining (GIM) and Generalised Rule Mining (GRM) problems. GIM and GRM use an efficient and intuitive computational model based purely on vector valued functions. The semantics of the interactions, their interestingness measures and the type of data considered are flexible components of vectorised frameworks. By separating the semantics of a problem from the algorithm used to mine it, the frameworks allow both to vary independently of each other. This makes it easier to develop new methods by focusing purely on a problem's semantics and removing the burden of designing an efficient algorithm. By encoding interactions as vectors in the space (or a sub-space) of samples, they provide an intuitive geometric interpretation that inspires novel methods. By operating in time linear in the number of interesting interactions that need to be examined, the GIM and GRM algorithms are optimal. The use of GRM or GIM provides efficient solutions to a range of problems in this thesis, including graph mining, counting based methods, itemset mining, clique mining, a clustering problem, complex pattern mining, negative pattern mining, solving an optimisation problem, spatial data mining, probabilistic itemset mining, probabilistic association rule mining, feature selection and generation, classification and multiplication rule mining. Data mining is a hypothesis generating endeavour, examining large databases for patterns suggesting novel and useful knowledge to the user. Since the database is a sample, the patterns found should describe hypotheses about the underlying process generating the data. In searching for these patterns, a DM algorithm makes additional hypothesis when it prunes the search space. Natural questions to ask then, are: "Does the algorithm find patterns that are statistically significant?" and "Did the algorithm make significant decisions during its search?". Such questions address the quality of patterns found though data mining and the confidence that a user can have in utilising them. Finally, statistics has a range of useful tools and measures that are applicable in data mining. In this context, this thesis incorporates statistical techniques -- in particular, non-parametric significance tests and correlation -- directly into novel data mining approaches. This idea is applied to statistically significant and relatively class correlated rule based classification of imbalanced data sets; significant frequent itemset mining; mining complex correlation structures between variables for feature selection; mining correlated multiplication rules for interaction mining and feature generation; and conjunctive correlation rules for classification. The application of GIM or GRM to these problems lead to efficient and intuitive solutions. Frequent itemset mining (FIM) is a fundamental problem in data mining. While it is usually assumed that the items occurring in a transaction are known for certain, in many applications the data is inherently noisy or probabilistic; such as adding noise in privacy preserving data mining applications, aggregation or grouping of records leading to estimated purchase probabilities, and databases capturing naturally uncertain phenomena. The consideration of existential uncertainty of item(sets) makes traditional techniques inapplicable. Prior to the work in this thesis, itemsets were mined if their expected support is high. This returns only an estimate, ignores the probability distribution of support, provides no confidence in the results, and can lead to scenarios where itemsets are labeled frequent even if they are more likely to be infrequent. Clearly, this is undesirable. This thesis proposes and solves the Probabilistic Frequent Itemset Mining (PFIM) problem, where itemsets are considered interesting if the probability that they are frequent is high. The problem is solved under the possible worlds model and a proposed probabilistic framework for PFIM. Novel and efficient methods are developed for computing an itemset's exact support probability distribution and frequentness probability, using the Poisson binomial recurrence, generating functions, or a Normal approximation. Incremental methods are proposed to answer queries such as finding the top-k probabilistic frequent itemsets. A number of specialised PFIM algorithms are developed, with each being more efficient than the last: ProApriori is the first solution to PFIM and is based on candidate generation and testing. ProFP-Growth is the first probabilistic FP-Growth type algorithm and uses a proposed probabilistic frequent pattern tree (Pro-FPTree) to avoid candidate generation. Finally, the application of GIM leads to GIM-PFIM; the fastest known algorithm for solving the PFIM problem. It achieves orders of magnitude improvements in space and time usage, and leads to an intuitive subspace and probability-vector based interpretation of PFIM.Knowledge Discovery in Datenbanken (KDD) ist der nicht-triviale Prozess, gĂŒltiges, neues, potentiell nĂŒtzliches und letztendlich verstĂ€ndliches Wissen aus großen DatensĂ€tzen zu extrahieren. Der wichtigste Schritt im KDD Prozess ist die Anwendung effizienter Data Mining (DM) Algorithmen um interessante Muster ("Patterns") in DatensĂ€tzen zu finden. Diese Dissertation beschĂ€ftigt sich mit drei verwandten Themen: Generalised Interaction und Rule Mining, die Einbindung von statistischen Methoden in neue DM Algorithmen und Probabilistic Frequent Itemset Mining (PFIM) in unsicheren Daten. Eine Interaktion ("Interaction") beschreibt den Einfluss, den Variablen aufeinander haben. Interaktionsmining ist der Prozess, Strukturen zwischen Variablen zu finden, die Interaktionsmuster beschreiben. Diese werden gewöhnlicherweise als Mengen, Graphen oder Regeln reprĂ€sentiert. Interaktionen können komplex sein und sowohl positive als auch negative Beziehungen reprĂ€sentieren. Außerdem kann das Vorhandensein von Interaktionen andere Interaktionen oder Variablen beeinflussen. Interaktionen stellen in Bereichen wie Soziale Netzwerk Analyse, Marketing, Wissenschaft, E-commerce, Statistik und Finanz wertvolle Information dar. Viele DM Methoden können als Interaktionsmining betrachtet werden: Zum Beispiel Clustering, Frequent Itemset Mining, Assoziationsregeln, Klassifikationsregeln, Graph Mining, Flock Mining, usw. Interaktionsmining-Probleme können sehr unterschiedliche Semantik, Musterdefinitionen, Interessantheitsmaße und Datentypen erfordern. Interaktionsmining-Probleme auf breiter und abstrakter Basis effizient -- und im Idealfall effizienter als mit spezialisierten Methoden -- zu lösen, ist ein herausforderndes Problem. Diese Dissertation fĂŒhrt das Generalised Interaction Mining (GIM) und das Generalised Rule Mining (GRM) Problem ein und beschreibt Lösungen fĂŒr diese. GIM und GRM benutzen ein effizientes und intuitives Berechnungsmodell, das einzig und allein auf vektorbasierten Funktionen beruht. Die Semantik der Interaktionen, ihre Interessantheitsmaße und die Datenarten, sind Komponenten in vektorisierten Frameworks. Die Frameworks ermöglichen die Trennung der Problemsemantik vom Algorithmus, so dass beide unabhĂ€ngig voneinander geĂ€ndert werden können. Die Entwicklung neuer Methoden wird dadurch erleichtert, da man sich völlig auf die Problemsemantik fokussieren kann und sich nicht mit der Entwicklung problemspezifischer Algorithmen befassen muss. Die Kodierung der Interaktionen als Vektoren im gesamten Raum (oder Teilraum) der Stichproben stellt eine intuitive geometrische Interpretation dar, die neuartige Methoden inspiriert. Die GRM- und GIM- Algorithmen haben lineare Laufzeit in der Anzahl der Interaktionen die geprĂŒft werden mĂŒssen und sind somit optimal. Die Anwendung von GRM oder GIM in dieser Dissertation ermöglicht effiziente Lösungen fĂŒr eine Reihe von Problemen, wie zum Beispiel Graph Mining, AufzĂ€hlungsmethoden, Itemset Mining, Clique Mining, ein Clusteringproblem, das Finden von komplexen und negativen Mustern, die Lösung von Optimierungsproblemen, Spatial Data Mining, probabilistisches Itemset Mining, probabilistisches Mining von Assoziationsregel, Selektion und Erzeugung von Features, Mining von Klassifikations- und Multiplikationsregel, u.v.m. Data Mining ist ein Verfahren, das Hypothesen produziert, indem es in großen DatensĂ€tzen Muster findet und damit fĂŒr den Anwender neues und nĂŒtzliches Wissen vorschlĂ€gt. Da die untersuchte Datenbank ein Resultat des datenerzeugenden Prozesses ist, sollten die gefundenen Muster Erkenntnisse ĂŒber diesen Prozess liefern. Bei der Suche nach diesen Mustern macht ein DM Algorithmus zusĂ€tzliche Hypothesen, wenn Teile des Suchraums ausgeschlossen werden. Die folgenden Fragen sind dabei wichtig: "Findet der Algorithmus statistisch signifikante Muster?" und "Hat der Algorithmus wĂ€hrend des Suchprozesses signifikante Entscheidungen getroffen?". Diese Fragen beeinflussen die QualitĂ€t der Muster und die Sicherheit die der Anwender in ihrer Benutzung haben kann. Da die Statistik auch eine Reihe von nĂŒtzlichen Methoden bereitstellt, die fĂŒr DM anwendbar sind, kombiniert diese Dissertation einige statistische Methoden mit neuen DM Algorithmen, insbesondere nicht-parametrische Signifikanztests und Korrelation. Diese Idee wird fĂŒr die folgenden Probleme angewandt: Signifikante und "relatively class correlated" regelbasierte Klassifikation in unsymmetrischen DatensĂ€tzen, signifikantes Frequent Itemset Mining, Mining von komplizierten Korrelationsstrukturen zwischen Variablen zum Zweck der Featureselektion, Mining von korrelierten Multiplikationsregeln zum Zwecke des Interaktionsminings und Featureerzeugung und konjunktive Korrelationsregeln fĂŒr die Klassifikation. Die Anwendung von GIM und GRM auf diese Probleme fĂŒhrt zu effizienten und intuitiven Lösungen. Frequent Itemset Mining (FIM) ist ein fundamentales Problem im Data Mining. Obwohl allgemein die Annahme gilt, dass in einer Transaktion enthaltene Items bekannt sind, sind die Daten in vielen Anwendungen unsicher oder probabilistisch. Beispiele sind das HinzufĂŒgen von Rauschen zu Datenschutzzwecken, die Gruppierung von DatensĂ€tzen die zu geschĂ€tzten Kaufwahrscheinlichkeiten fĂŒhren und DatensĂ€tze deren Herkunft von Natur aus unsicher sind. Die BerĂŒcksichtigung von unsicheren DatensĂ€tzen verhindert die Anwendung von traditionellen Methoden. Vor der Arbeit in dieser Dissertation wurden Itemsets gesucht, deren erwartetes Vorkommen hoch ist. Diese Methode produziert jedoch nur SchĂ€tzwerte, vernachlĂ€ssigt die Wahrscheinlichkeitsverteilung der Vorkommen, bietet keine Sicherheit fĂŒr die Genauigkeit der Ergebnisse und kann zu Szenarien fĂŒhren in denen das Vorkommen als hĂ€ufig eingestuft wird, obwohl die Wahrscheinlichkeit höher ist, dass sie nur selten vorkommen. Solche Ergebnisse sind natĂŒrlich unerwĂŒnscht. Diese Dissertation fĂŒhrt das Probabilistic Frequent Itemset Mining (PFIM) ein. Diese Lösung betrachtet Itemsets als interessant, wenn die Wahrscheinlichkeit groß ist, dass sie hĂ€ufig vorkommen. Die Problemlösung besteht aus der Anwendung des Possible Worlds Models und dem vorgeschlagenen probabilistisches Framework fĂŒr PFIM. Es werden neue und effiziente Methoden entwickelt um die Wahrscheinlichkeitsverteilung des Vorkommens und die HĂ€ufigkeitsverteilung eines Itemsets zu berechnen. Dazu werden die Poisson Binomial Recurrence, Generating Functions, oder eine normalverteilte AnnĂ€herung verwendet. Inkrementelle Methoden werden vorgeschlagen um Fragen wie "Finde die top-k Probabilistic Frequent Itemsets" zu beantworten. Mehrere PFIM Algorithmen werden entwickelt, wobei die Effizienz von Algorithmus zu Algorithmus steigt: ProApriori ist die erste Lösung fĂŒr PFIM und basiert auf erzeugen und testen von Kandidaten. ProFP-Growth ist der erste probabilistische FP-Growth Algorithmus. Er schlĂ€gt einen Probabilistic Frequent Pattern Tree (Pro-FPTree) vor, der Kandidatenerzeugung ĂŒberflĂŒssig macht. Die Anwendung von GIM fĂŒhrt schließlich zu GIM-PFIM, dem schnellsten bekannten Algorithmus zur Lösung des PFIM Problems. Dieser Algorithmus resultiert in einem um GrĂ¶ĂŸenordnungen besseren Zeit- und Speicherbedarf, und fĂŒhrt zu einer intuitiven Interpretation von PFIM, basierend auf UnterrĂ€umen und Wahrscheinlichkeitsvektoren

    ExpRalytics: analyse expressive et efficace de graphes RDF

    Get PDF
    Large (Linked) Open Data are increasingly shared as RDF graphs today. However, such data does not yet reach its full potential in terms of sharing and reuse. We provide new methods to meaningfully summarize data graphs, with a particular focus on RDF graphs. One class of tools for this task are structural RDF graph summaries, which allow users to grasp the different connections between RDF graph nodes. To this end, we introduce our novel RDFQuotient tool that finds compact yet informative RDF graph summaries that can serve as first-sight visualizations of an RDF graph’s structure. We also consider the problem of automatically identifying the k most interesting aggregate queries that can be evaluated on an RDF graph, given an integer k and a user-specified interestingness function. Aggregate queries are routinely used to learn insights from relational data warehouses, and some prior research has addressed the problem of automatically recommending interesting aggregate queries.Les donnĂ©es ouvertes sont souvent partagĂ©es sous la forme de graphes RDF, qui sont une incarnation du principe Linked Open Data (donnĂ©es ouvertes liĂ©es). De telles donnĂ©es n’ont toutefois pas atteint leur entier potentiel d’utilisation et de partage. L’obstacle pour ce faire rĂ©side principalement au niveau de la capacitĂ© des utilisateurs Ă  explorer, dĂ©couvrir et saisir le contenu et des graphes RDF; cette tĂąche est complexe car les graphes sont naturellement hĂ©tĂ©rogĂšnes, et peuvent ĂȘtre Ă  la fois volumineux et complexes. Nous proposons de nouvelles mĂ©thodes pour rĂ©sumer de grands graphes de donnĂ©es, avec un accent particulier sur les graphes RDF. A cette fin, nous avons proposĂ© une nouvelle approchĂ© pour la construction de rĂ©sumĂ©s structurels de graphes RDF, Ă  savoir RDFQuotient.Nous considĂ©rons aussi le problĂšme d’identifier automatiquement les requĂȘtes d’agrĂ©gation les plus intĂ©ressantes qui peuvent ĂȘtre Ă©valuĂ©es sur un graphe RDF
    • 

    corecore