125 research outputs found

    Aggregation of Gamma-Signatures and Applications to Bitcoin

    Get PDF
    Aggregate signature (AS) allows non-interactively condensing multiple individual signatures into a compact one. Besides the faster verification, it is useful to reduce storage and bandwidth, and is especially attractive for blockchain and cryptocurrency. In this work, we first demonstrate the subtlety of achieving AS from general groups, by a concrete attack that actually works against the natural implementations of AS based on almost all the variants of DSA and Schnorr’s. Then, we show that aggregate signature can be derived from the Γ-signature scheme proposed by Yao, et al. To the best of our knowledge, this is the first aggregate signature scheme from general elliptic curves without bilinear maps (in particular, the secp256k1 curve used by Bitcoin). The security of aggregate Γ-signature is proved based on a new assumption proposed and justified in this work, referred to as non-malleable discrete-logarithm (NMDL), which might be of independent interest and could find more cryptographic applications in the future. When applying the resultant aggregate Γ-signature to Bitcoin, the storage volume of signatures reduces about 49.8%, and the signature verification time can evenreduce about 72%. Finally, we specify in detail the application of the proposed AS scheme to Bitcoin, with the goal of maximizing performance and compatibility. We adopt a Merkle-Patricia tree based implementation, and the resulting system is also more friendly to segregated witness and provides better protection against transaction malleability attacks

    Towards Post-Quantum Blockchain: A Review on Blockchain Cryptography Resistant to Quantum Computing Attacks

    Get PDF
    [Abstract] Blockchain and other Distributed Ledger Technologies (DLTs) have evolved significantly in the last years and their use has been suggested for numerous applications due to their ability to provide transparency, redundancy and accountability. In the case of blockchain, such characteristics are provided through public-key cryptography and hash functions. However, the fast progress of quantum computing has opened the possibility of performing attacks based on Grover's and Shor's algorithms in the near future. Such algorithms threaten both public-key cryptography and hash functions, forcing to redesign blockchains to make use of cryptosystems that withstand quantum attacks, thus creating which are known as post-quantum, quantum-proof, quantum-safe or quantum-resistant cryptosystems. For such a purpose, this article first studies current state of the art on post-quantum cryptosystems and how they can be applied to blockchains and DLTs. Moreover, the most relevant post-quantum blockchain systems are studied, as well as their main challenges. Furthermore, extensive comparisons are provided on the characteristics and performance of the most promising post-quantum public-key encryption and digital signature schemes for blockchains. Thus, this article seeks to provide a broad view and useful guidelines on post-quantum blockchain security to future blockchain researchers and developers.10.13039/501100010801-Xunta de Galicia (Grant Number: ED431G2019/01) 10.13039/501100011033-Agencia Estatal de InvestigaciĂłn (Grant Number: TEC2016-75067-C4-1-R and RED2018-102668-T) 10.13039/501100008530-European Regional Development FundXunta de Galicia; ED431G2019/0

    Twitter Bots’ Detection with Benford’s Law and Machine Learning

    Get PDF
    Online Social Networks (OSNs) have grown exponentially in terms of active users and have now become an influential factor in the formation of public opinions. For this reason, the use of bots and botnets for spreading misinformation on OSNs has become a widespread concern. Identifying bots and botnets on Twitter can require complex statistical methods to score a profile based on multiple features. Benford’s Law, or the Law of Anomalous Numbers, states that, in any naturally occurring sequence of numbers, the First Significant Leading Digit (FSLD) frequency follows a particular pattern such that they are unevenly distributed and reducing. This principle can be applied to the first-degree egocentric network of a Twitter profile to assess its conformity to such law and, thus, classify it as a bot profile or normal profile. This paper focuses on leveraging Benford’s Law in combination with various Machine Learning (ML) classifiers to identify bot profiles on Twitter. In addition, a comparison with other statistical methods is produced to confirm our classification results

    Robustness of Image-Based Malware Analysis

    Get PDF
    In previous work, “gist descriptor” features extracted from images have been used in malware classification problems and have shown promising results. In this research, we determine whether gist descriptors are robust with respect to malware obfuscation techniques, as compared to Convolutional Neural Networks (CNN) trained directly on malware images. Using the Python Image Library (PIL), we create images from malware executables and from malware that we obfuscate. We conduct experiments to compare classifying these images with a CNN as opposed to extracting the gist descriptor features from these images to use in classification. For the gist descriptors, we consider a variety of classification algorithms including k-nearest neighbors, random forest, support vector machine, and multi-layer perceptron. We find that gist descriptors are more robust than CNNs, with respect to the obfuscation techniques that we consider

    A Blockchain-Based Retribution Mechanism for Collaborative Intrusion Detection

    Get PDF
    Collaborative intrusion detection approach uses the shared detection signature between the collaborative participants to facilitate coordinated defense. In the context of collaborative intrusion detection system (CIDS), however, there is no research focusing on the efficiency of the shared detection signature. The inefficient detection signature costs not only the IDS resource but also the process of the peer-to-peer (P2P) network. In this paper, we therefore propose a blockchain-based retribution mechanism, which aims to incentivize the participants to contribute to verifying the efficiency of the detection signature in terms of certain distributed consensus. We implement a prototype using Ethereum blockchain, which instantiates a token-based retribution mechanism and a smart contract-enabled voting-based distributed consensus. We conduct a number of experiments built on the prototype, and the experimental results demonstrate the effectiveness of the proposed approach

    A Blockchain-Based Tamper-Resistant Logging Framework

    Get PDF
    Since its introduction in Bitcoin, the blockchain has proven to be a versatile data structure. In its role as an immutable ledger, it has grown beyond its initial use in financial transactions to be used in recording a wide variety of other useful information. In this paper, we explore the application of the blockchain outside of its traditional decentralized, financial domain. We show how, even with only a single “mining” node, a proof-of-work blockchain can be the cornerstone of a tamper resistant logging framework. By attaching a proof-of-work to blocks of logging messages, we make it increasingly difficult for an attacker to modify those logs even after totally compromising the system. Furthermore, we discuss various strategies an attacker might take to modify the logs without detection and show how effective those evasion techniques are against statistical analysis

    Impact of Location Spoofing Attacks on Performance Prediction in Mobile Networks

    Get PDF
    Performance prediction in wireless mobile networks is essential for diverse purposes in network management and operation. Particularly, the position of mobile devices is crucial to estimating the performance in the mobile communication setting. With its importance, this paper investigates mobile communication performance based on the coordinate information of mobile devices. We analyze a recent 5G data collection and examine the feasibility of location-based performance prediction. As location information is key to performance prediction, the basic assumption of making a relevant prediction is the correctness of the coordinate information of devices given. With its criticality, this paper also investigates the impact of position falsification on the ML-based performance predictor, which reveals the significant degradation of the prediction performance under such attacks, suggesting the need for effective defense mechanisms against location spoofing threats

    Word Embeddings for Fake Malware Generation

    Get PDF
    Signature and anomaly-based techniques are the fundamental methods to detect malware. However, in recent years this type of threat has advanced to become more complex and sophisticated, making these techniques less effective. For this reason, researchers have resorted to state-of-the-art machine learning techniques to combat the threat of information security. Nevertheless, despite the integration of the machine learning models, there is still a shortage of data in training that prevents these models from performing at their peak. In the past, generative models have been found to be highly effective at generating image-like data that are similar to the actual data distribution. In this paper, we leverage the knowledge of generative modeling on opcode sequences and aim to generate malware samples by taking advantage of the contextualized embeddings from BERT. We obtained promising results when differentiating between real and generated samples. We observe that generated malware has such similar characteristics to actual malware that the classifiers are having difficulty in distinguishing between the two, in which the classifiers falsely identify the generated malware as actual malware almost of the time
    • …
    corecore