4,647 research outputs found

    Infinite Probabilistic Databases

    Get PDF
    Probabilistic databases (PDBs) are used to model uncertainty in data in a quantitative way. In the standard formal framework, PDBs are finite probability spaces over relational database instances. It has been argued convincingly that this is not compatible with an open-world semantics (Ceylan et al., KR 2016) and with application scenarios that are modeled by continuous probability distributions (Dalvi et al., CACM 2009). We recently introduced a model of PDBs as infinite probability spaces that addresses these issues (Grohe and Lindner, PODS 2019). While that work was mainly concerned with countably infinite probability spaces, our focus here is on uncountable spaces. Such an extension is necessary to model typical continuous probability distributions that appear in many applications. However, an extension beyond countable probability spaces raises nontrivial foundational issues concerned with the measurability of events and queries and ultimately with the question whether queries have a well-defined semantics. It turns out that so-called finite point processes are the appropriate model from probability theory for dealing with probabilistic databases. This model allows us to construct suitable (uncountable) probability spaces of database instances in a systematic way. Our main technical results are measurability statements for relational algebra queries as well as aggregate queries and Datalog queries

    Relational Approach to Knowledge Engineering for POMDP-based Assistance Systems as a Translation of a Psychological Model

    Get PDF
    Assistive systems for persons with cognitive disabilities (e.g. dementia) are difficult to build due to the wide range of different approaches people can take to accomplishing the same task, and the significant uncertainties that arise from both the unpredictability of client's behaviours and from noise in sensor readings. Partially observable Markov decision process (POMDP) models have been used successfully as the reasoning engine behind such assistive systems for small multi-step tasks such as hand washing. POMDP models are a powerful, yet flexible framework for modelling assistance that can deal with uncertainty and utility. Unfortunately, POMDPs usually require a very labour intensive, manual procedure for their definition and construction. Our previous work has described a knowledge driven method for automatically generating POMDP activity recognition and context sensitive prompting systems for complex tasks. We call the resulting POMDP a SNAP (SyNdetic Assistance Process). The spreadsheet-like result of the analysis does not correspond to the POMDP model directly and the translation to a formal POMDP representation is required. To date, this translation had to be performed manually by a trained POMDP expert. In this paper, we formalise and automate this translation process using a probabilistic relational model (PRM) encoded in a relational database. We demonstrate the method by eliciting three assistance tasks from non-experts. We validate the resulting POMDP models using case-based simulations to show that they are reasonable for the domains. We also show a complete case study of a designer specifying one database, including an evaluation in a real-life experiment with a human actor
    • …
    corecore